Although many studies have investigated how locomotor capacities change with size, few studies have examined whether different-sized individuals within a species have similar kinematics during locomotion. We quantified the skeletal limb morphology and the three-dimensional kinematics of the hindlimb of four sizes (4–66 g) of the lizard Dipsosaurus dorsalis moving steadily at both the walk-run transition (50 % duty factor) and at a moderately fast speed of 250 cm s(−)(1). We used analyses of variance to test whether limb movements changed with size and to determine whether size and speed had interactive effects on kinematics. The disproportionately long hindlimbs of smaller lizards partly contributed to their relatively greater (i.e. adjusted by snout-vent length) values of linear kinematic variables. Both relative linear and angular kinematics changed significantly with both size and speed, both of which had widespread interactive effects. By having more extension of the knee and ankle joints, and thus a relatively higher hip height during stance, the slow-speed movements of small lizards displayed some of the characteristics of the fast-speed movements in larger lizards. Further, approximately one-fifth and two-fifths of the strides of the two smallest size classes were digitigrade at the lower and higher speeds, respectively, whereas the two largest size classes always had a plantigrade foot posture. Some of the most striking effects of size on kinematics were most evident at the lower of the two speeds. Unlike interspecific studies, which show that the limbs often become more crouched with decreased size, the more extended limbs of smaller lizards in this study suggest that variation in size alone cannot be the causal reason for differences in limb posture.
Size matters: ontogenetic variation in the three-dimensional kinematics of steady-speed locomotion in the lizard Dipsosaurus dorsalis
D.J. Irschick, B.C. Jayne; Size matters: ontogenetic variation in the three-dimensional kinematics of steady-speed locomotion in the lizard Dipsosaurus dorsalis. J Exp Biol 15 July 2000; 203 (14): 2133–2148. doi: https://doi.org/10.1242/jeb.203.14.2133
Download citation file:
Advertisement
Cited by
Celebrating 100 years of discovery

We are proud to be celebrating 100 years of discovery in Journal of Experimental Biology. Visit our centenary webpage to find out more about how we are marking this historic milestone.
Craig Franklin launches our centenary celebrations

Editor-in-Chief Craig Franklin reflects on 100 years of JEB and looks forward to our centenary celebrations, including a supplementary special issue, a new early-career researcher interview series and the launch of our latest funding initiatives.
Looking back on the first issue of JEB

Journal of Experimental Biology launched in 1923 as The British Journal of Experimental Biology. As we celebrate our centenary, we look back at that first issue and the zoologists publishing their work in the new journal.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4510)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Biology Communication Workshop: Engaging the world in the excitement of research
-BioCommunicationWorkshop.png?versionId=4510)
We are delighted to be sponsoring a Biology Communication Workshop for early-career researchers as part of JEB’s centenary celebrations. The workshop focuses on how to effectively communicate your science to other researchers and the public and takes place the day before the CSZ annual meeting, on 14 May 2023. Find out more and apply here.
Mexican fruit flies wave for distraction

Dinesh Rao and colleagues have discovered that Mexican fruit flies vanish in a blur in the eyes of predatory spiders when they wave their wings at the arachnids, buying the flies time to make their escape.