The colour vision of many primates is trichromatic, whereas that of all other mammals is thought to be dichromatic or monochromatic. Moreover, the triplets of cone pigments in different catarrhines (Old World apes and monkeys) are strikingly similar in their spectral positions. We ask whether the selective advantage of trichromacy lies in an enhanced ability to find edible leaves or fruit. Further, we ask whether any factor in these two search tasks has constrained the particular set of cone spectral sensitivities observed in all catarrhines. We measured the spectral properties of the natural environments of six primate species in Uganda: Pan troglodytes, Cercopithecus mitis, Cercopithecus ascanius, Lophocebus albigena, Colobus guereza and Colobus badius. We concentrated on the fruit and leaves in their diets and the leaves of the trees that make up the background against which these diet items must be found. We plotted these measured stimuli in colour spaces appropriate for each primate species, and found that both frugivory and folivory are facilitated by the extra dimension of colour vision found in catarrhines but lacking in most other mammals. Furthermore, by treating the task of searching for food as a signal-detection task, we show that, of all possible combinations of cone sensitivities, the spectral positions of the actual primate pigments are optimal for finding fruit or young leaves against the background of mature leaves. This is because the variance of the chromaticities of the mature leaves is minimised in one channel of the primate's colour vision, so allowing anything that is not a mature leaf to stand out.

Asenjo
A. B.
,
Rim
J.
,
Oprian
D.
(
1994
).
Molecular determinants of human red/green color discrimination
.
Neuron
12
,
1131
–.
Baranga
D.
(
1983
).
Changes in the chemical composition of food parts in the diet of colobus monkeys
.
Ecology
64
,
668
–.
Barlow
H. B.
(
1982
).
What causes trichromacy? A theoretical analysis using comb-filtered spectra
.
Vision Res
22
,
635
–.
Bowmaker
J. K.
(
1998
).
Evolution of colour vision in vertebrates
.
Eye
12
,
541
–.
Bowmaker
J. K.
,
Astell
S.
,
Hunt
D. M.
,
Mollon
J. D.
(
1991
).
Photosensitive and photostable pigments in the retinae of Old World monkeys
.
J. Exp. Biol
156
,
1
–.
Bowmaker
J. K.
,
Speigelhalter
D. J.
,
Jacobs
G. H.
,
Mollon
J. D.
(
1985
).
Two types of trichromatic squirrel monkey share a pigment in the red—green spectral region
.
Vision Res
25
,
1937
–.
Bridges
C. D. B.
,
Yoshikami
S.
(
1970
).
Distribution and evolution of visual pigments in salmonid fishes
.
Vision Res
10
,
609
–.
Cicerone
C. M.
,
Nerger
J. L.
(
1989
).
The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis
.
Vision Res
29
,
115
–.
Clutton-Brock
T. H.
(
1975
).
Feeding behaviour of red colobus and black and white colobus in East Africa
.
Folia Primatol
23
,
165
–.
Dartnall
H. J. A.
,
Bowmaker
J. K.
,
Mollon
J. D.
(
1983
).
Human visual pigments: microspectrophotometric results from the eyes of seven persons
.
Proc. R. Soc. Lond. B
220
,
115
–.
Dulai
K. S.
,
Bowmaker
J. K.
,
Mollon
J. D.
,
Hunt
D. M.
(
1994
).
Sequence divergence, polymorphism and evolution of middle-wave and long-wave visual pigment genes of great apes and Old World monkeys
.
Vision Res
34
,
2483
–.
Dulai
K. S.
,
von Dornum
M.
,
Mollon
J. D.
,
Hunt
D. M.
(
1999
).
The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates
.
Genome Res
9
,
629
–.
Freeland
W. J.
(
1979
).
Mangabey (Cercocebus albigena): Social organization and population density in relation to food use and availability
.
Folia Primatol
32
,
108
–.
Gautier-Hion
A.
,
Duplantier
J.-M.
,
Quris
R.
,
Feer
F.
,
Sourd
C.
,
Decoux
J.-P.
,
Dubost
G.
,
Emmons
L.
,
Erard
C.
,
Hecketsweiler
P.
,
Moungazi
A.
,
Roussilhon
C.
,
Thiollay
J.-M.
(
1985
).
Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community.
Oecologia
65
,
324
337.
Geisler
W. S.
(
1989
).
Sequential ideal-observer analysis of visual discriminations
.
Psychol. Rev
96
,
267
–.
Hecht
S.
,
Shlaer
S.
,
Pirenne
M. H.
(
1942
).
Energy, quanta and vision
.
J. Gen. Physiol
25
,
819
–.
Hendley
C. D.
,
Hecht
S.
(
1949
).
The colors of natural objects and terrains and their relation to visual color deficiency
.
J. Opt. Soc. Am
39
,
870
–.
Ibbotson
R. E.
,
Hunt
D. M.
,
Bowmaker
J. K.
,
Mollon
J. D.
(
1992
).
Sequence divergence and copy number of the middle-and long-wave photopigment genes in Old World monkeys
.
Proc. R. Soc. Lond. B
247
,
145
–.
Isbell
L. A.
(
1983
).
Daily ranging behaviour of red colobus (Colobus badius) in Kibale Forest, Uganda
.
Folia Primatol
41
,
34
–.
Jacobs
G. H.
(
1993
).
The distribution and nature of colour vision among the mammals
.
Biol. Rev
68
,
413
–.
Jacobs
G. H.
,
Deegan
J. F.
,
Moran
J. L.
(
1996
).
ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes)
.
Vision Res
36
,
2587
–.
Jacobs
G. H.
,
Neitz
M.
,
Deegan
J. F.
,
Neitz
J.
(
1996
).
Trichromatic colour vision in New World monkeys
.
Nature
382
,
156
–.
Janson
C. H.
(
1983
).
Adaptation of fruit morphology to dispersal agents in a neotropical forest
.
Science
219
,
187
–.
Janzen
D. H.
(
1980
).
When is it coevolution?
.
Evolution
34
,
611
–.
Lucas
P. W.
,
Darvell
B. W.
,
Lee
P. K. D.
,
Yuen
T. D. B.
,
Choong
M. F.
(
1998
).
Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision
.
Folia Primatol
69
,
139
–.
MacLeod
D. I. A.
,
Boynton
R. M.
(
1979
).
Chromaticity diagram showing cone excitation by stimuli of equal luminance
.
J. Opt. Soc. Am
69
,
1183
–.
MacNichol
E. F.
(
1986
).
A unifying presentation of photopigment spectra
.
Vision Res
26
,
1543
–.
Merbs
S. L.
,
Nathans
J.
(
1992
).
Absorption spectra of human cone pigments
.
Nature
356
,
433
–.
Mollon
J. D.
(
1989
).
‘Tho she kneel'd in that Place where they grew…’
.
J. Exp. Biol
146
,
21
–.
Mollon
J. D.
,
Bowmaker
J. K.
(
1992
).
The spatial arrangement of cones in the primate fovea
.
Nature
360
,
677
–.
Mollon
J. D.
,
Bowmaker
J. K.
,
Jacobs
G. H.
(
1984
).
Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments
.
Proc. R. Soc. Lond. B
222
,
373
–.
Nagle
M. G.
,
Osorio
D.
(
1993
).
The tuning of human photopigments may minimize red—green chromatic signals in natural conditions
.
Proc. R. Soc. Lond. B
252
,
209
–.
Nathans
J.
(
1999
).
The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments
.
Neuron
24
,
299
–.
Nathans
J.
,
Thomas
D.
,
Hogness
D. S.
(
1986
).
Molecular genetics of human color vision: The genes encoding blue, green and red pigments
.
Science
232
,
193
–.
Olupot
W.
,
Waser
P. M.
,
Chapman
C. A.
(
1998
).
Fruit finding by mangabeys (Lophocebus albigena): Are monitoring of fig trees and use of sympatric frugivore calls possible strategies?
.
Int. J. Primatol
19
,
339
–.
Oprian
D. D.
,
Asenjo
A. B.
,
Lee
N.
,
Pelletier
S. L.
(
1991
).
Design, chemical synthesis and expression of the genes for the three human color vision pigments
.
Biochemistry
30
,
11367
–.
Osorio
D.
,
Vorobyev
M.
(
1996
).
Colour vision as an adaptation to frugivory in primates
.
Proc. R. Soc. Lond. B
263
,
593
–.
Pokorny
J.
,
Smith
V. C.
(
1976
).
Effect of field size on red—green colour mixing equations
.
J. Opt. Soc. Am
66
,
705
–.
Regan
B. C.
,
Julliot
C.
,
Simmen
B.
,
Vienot
F.
,
Charles-Dominique
P.
,
Mollon
J. D.
(
1998
).
Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey
.
Vision Res
38
,
3321
–.
Schnapf
J. L.
,
Kraft
T. W.
,
Baylor
D. A.
(
1987
).
Spectral sensitivity of human cone photoreceptors
.
Nature
325
,
439
–.
Snodderly
D. M.
,
Auran
J. D.
,
Delori
F. C.
(
1984
).
The macular pigment. II. Spatial distribution in primate retinas
.
Invest. Ophthalmol. Vis. Sci
25
,
674
–.
Snodderly
D. M.
,
Brown
P. K.
,
Delori
F. C.
,
Auran
J. D.
(
1984
).
The macular pigment. I. Absorbance spectra, localization and discrimination from other yellow pigments in the primate retina
.
Invest. Ophthalmol. Vis. Sci
25
,
660
–.
Steward
J. M.
,
Cole
L.
(
1989
).
What do color vision defectives say about everyday tasks?
.
Optometry Vis. Sci
66
,
288
–.
Sumner
P.
,
Mollon
J. D.
(
2000
).
Chromaticity as a signal ofripeness in fruits taken by primates
.
J. Exp. Biol
203
,
1987
–.
Tovee
M. J.
,
Bowmaker
J. K.
,
Mollon
J. D.
(
1992
).
The relationship between cone pigments and behavioural sensitivity ina New World monkey (Callithrix jacchus jacchus)
.
Vision Res
32
,
867
–.
Webster
M. A.
,
Mollon
J. D.
(
1997
).
Adaptation and the color statistics of natural images
.
Vision Res
37
,
3283
–.
Yokoyama
S.
(
1994
).
Gene duplications and evolution of the short wavelength-sensitive visual pigments in vertebrates
.
Mol. Biol. Evol
11
,
32
–.
This content is only available via PDF.