By simultaneously measuring carbon dioxide release, water loss and flight force in several species of fruit flies in the genus Drosophila, we have investigated respiration and respiratory transpiration during elevated locomotor activity. We presented tethered flying flies with moving visual stimuli in a virtual flight arena, which induced them to vary both flight force and energetic output. In response to the visual motion, the flies altered their energetic output as measured by changes in carbon dioxide release and concomitant changes in respiratory water loss. We examined the effect of absolute body size on respiration and transpiration by studying four different-sized species of fruit flies. In resting flies, body-mass-specific CO(2) release and water loss tend to decrease more rapidly with size than predicted according to simple allometric relationships. During flight, the mass-specific metabolic rate decreases with increasing body size with an allometric exponent of −0.22, which is slightly lower than the scaling exponents found in other flying insects. In contrast, the mass-specific rate of water loss appears to be proportionately greater in small animals than can be explained by a simple allometric model for spiracular transpiration. Because fractional water content does not change significantly with increasing body size, the smallest species face not only larger mass-specific energetic expenditures during flight but also a higher risk of desiccation than their larger relatives. Fruit flies lower their desiccation risk by replenishing up to 75 % of the lost bulk water by metabolic water production, which significantly lowers the risk of desiccation for animals flying under xeric environmental conditions.
The scaling of carbon dioxide release and respiratory water loss in flying fruit flies (Drosophila spp.)
F.O. Lehmann, M.H. Dickinson, J. Staunton; The scaling of carbon dioxide release and respiratory water loss in flying fruit flies (Drosophila spp.). J Exp Biol 15 May 2000; 203 (10): 1613–1624. doi: https://doi.org/10.1242/jeb.203.10.1613
Download citation file:
Advertisement
Cited by
New funding schemes for junior faculty staff

In celebration of our 100th anniversary, JEB has launched two new grants to support junior faculty staff working in animal comparative physiology and biomechanics who are within five years of setting up their first lab/research group. Check out our ECR Visiting Fellowships and Research Partnership Kickstart Travel Grants. First deadline for applications is 15 July 2023.
JEB@100: an interview with Monitoring Editor Sanjay Sane

Sanjay Sane tells us about his first experience of publishing with the journal and why he thinks JEB is going to play a key role in our understanding of the current climate crisis and its implications for biodiversity.
The Forest of Biologists

The Forest of Biologists is a biodiversity initiative created by The Company of Biologists, with support from the Woodland Trust. For every Research and Review article published in Journal of Experimental Biology a native tree is planted in a UK forest. In addition to this we are protecting and restoring ancient woodland and are dedicating these trees to our peer reviewers. Visit our virtual forest to learn more.
Celebrating 100 years of discovery

This Special Issue focuses on broad biological questions addressed through the lens of comparative biomechanics. Crosscutting through time, this series of Reviews, Commentaries and Research Articles addresses questions from the vantage points of the history of the field, today’s research, and the future of comparative biomechanics. Read the Editorial by Sheila Patek, Monica Daley and Sanjay Sane.
Centenary Review - Adaptive echolocation behavior

Cynthia F. Moss and colleagues Review the behaviours used by echolocating mammals to track and intercept moving prey, interrogate dynamic sonar scenes, and exploit visual and passive acoustic stimuli.
Lack of oxygen curtails vision in red-eared sliders

When red-eared sliders sink to the bottom of a frozen pond for winter they reduce many biological systems to minimum life support, but now Michael Ariel and colleagues show that the reptiles temporarily lose their sight due to lack of oxygen but retain hearing.