The mosquito Aedes aegypti is capable of transmitting a variety of pathogens to man and to other vertebrates. The midgut of this insect has been well-studied both as the tissue where the first contact occurs between ingested pathogens and the insect host, and as a model system for blood meal digestion in blood-sucking insects. To understand better the nature of the midgut surface encountered by parasites or viruses, we used scanning electron microscopy to identify the most prominent structures and cell morphologies on the luminal midgut surface. The luminal side of the midgut is a complex and layered set of structures. The microvilli that are found on most, but not all, cells are covered by a network of fine strands that we have termed the microvilli-associated network (MN). The MN strands are membranous, as shown by a membrane bilayer visible in cross sections of MN strands at high magnification in transmission electron micrographs. The MN is found in blood-fed as well as unfed mosquitoes and is not affected by chitinase treatment, suggesting that it is not related to the chitinous peritrophic membrane that is formed only after blood feeding. The cells in the midgut epithelium have two distinct morphologies: the predominant cell type is densely covered with microvilli, while cells with fewer microvilli are found interspersed throughout the midgut. We used lectins to probe for the presence of carbohydrates on the midgut surface. A large number of lectins bind to the luminal midgut surface, suggesting that a variety of sugar linkages are present on the structures visualized by electron microscopy. Some of these lectins partially block attachment of malaria ookinetes to the midgut surface in vitro. Thus, the mosquito midgut epithelium, like the lining of mammalian intestines, is complex, composed of a variety of cell types and extensively covered with surface carbohydrate that may play a role in pathogen attachment.

Bauer
P.
,
Rudin
W.
,
Hecker
H.
(
1977
).
Ultrastructural changes in midgut cells of female Aedes aegypti L. (Insecta, Diptera) after starvation or sugar diet
.
Cell Tissue Res
177
,
215
–.
Bertram
D. S.
,
Bird
R. G.
(
1961
).
Studies on mosquito-borne viruses in their vectors. I. The normal fine structure of the midgut epithelium of the adult female Aedes aegypti (L.) and the functional significance of its modification following a blood meal
.
Trans. R. Soc. Trop. Med. Hyg
55
,
404
–.
Billingsley
P. F.
(
1990
).
The midgut ultrastructure of hematophagous insects
.
Annu. Rev. Ent
35
,
219
–.
Billingsley
P. F.
(
1994
).
Vector—parasite interactions for vaccine development
.
Int. J. Parasitol
24
,
53
–.
Billingsley
P. F.
,
Downe
A. E. R.
(
1983
).
Ultrastructural changes in posterior midgut cells associated with blood feeding in adult female Rhodnius prolixus Stål (Hemiptera: Reduviidae)
.
Can. J. Zool
61
,
2574
–.
Broekaert
W. F.
,
Nsimba-Lubaki
M.
,
Peeters
B.
,
Peumans
W. J.
(
1984
).
A lectin from elder (Sambucus nigra L.) bark
.
Biochem. J
221
,
163
–.
Brown
M. R.
,
Crim
J. W.
,
Lea
A. O.
(
1986
).
FMRFamide and pancreatic polypeptide-like immunoreactivity of endocrine cells in the midgut of a mosquito
.
Tissue & Cell
18
,
419
–.
Brown
M. R.
,
Lea
A. O.
(
1988
).
FMRFamide-and adipokinetic hormone-like immunoreactivity in the nervous system of the mosquito, Aedes aegypti
.
J. Comp. Neurol
270
,
606
–.
Brown
M. R.
,
Raikhel
A. S.
,
Lea
A. O.
(
1985
).
Ultrastructure of midgut endocrine cells in the adult mosquito, Aedes aegypti
.
Tissue & Cell
17
,
709
–.
Carter
R.
,
Gwadz
R. W.
,
McAuliffe
F. M.
(
1979
).
Plasmodium gallinaceum: transmission-blocking immunity in chickens. I. Comparative immunogenicity of gametocyte-and gamete-containing preparations
.
Exp. Parasitol
47
,
185
–.
Cociancich
S. O.
,
Park
S. S.
,
Fidock
D. A.
,
Shahabuddin
M.
(
1999
).
Vesicular ATPase-overexpressing cells determine the distribution of malaria parasite oocysts on the midgut of mosquitoes
.
J. Biol. Chem
274
,
12650
–.
Collins
F. H.
,
Paskewitz
S. M.
(
1995
).
Malaria: current and future prospects for control
.
Annu. Rev. Ent
40
,
195
–.
Crampton
J. M.
,
Warren
A.
,
Lycett
G. J.
,
Hughes
M. A.
,
Comley
I. P.
,
Eggleston
P.
(
1994
).
Genetic manipulation ofinsect vectors as a strategy for the control of vector-borne disease
.
Ann. Trop. Med. Parasitol
88
,
3
–.
Day
J. F.
,
Bennets
M. J.
(
1953
).
Healing of gut wounds in the mosquito Aedes aegypti (L.) and the leafhopper Orosius argentatus (Ev.)
.
Austr. J. Biol. Sci
6
,
580
–.
Gebert
A.
,
Rothkötter
H.-J.
,
Pabst
R.
(
1996
).
M cells in Peyer's patches of the intestine
.
Int. Rev. Cytol
167
,
91
–.
Gwadz
R. W.
(
1994
).
Genetic approaches to malaria control: how long the road?
.
Am. J. Trop. Med. Hyg
50
,
116
–.
Hagiwara
K.
,
Colletcassart
D.
,
Kobayashi
K.
,
Vaerman
J. P.
(
1988
).
Jacalin — isolation, characterization and influence of various factors on its interaction with human IgA1, as assessed by precipitation and latex agglutination
.
Mol. Immunol
25
,
69
–.
Hecker
H.
(
1977
).
Structure and function of midgut epithelial cells in Culicidae mosquitoes (Insecta, Diptera)
.
Cell Tissue Res
184
,
321
–.
Hecker
H.
,
Freyvogel
T. A.
,
Briegel
H.
,
Steiger
R.
(
1971
).
Ultrastructural differentiation of the midgut epithelium in female Aedes aegypti (L.) (Insecta, Diptera) imagines
.
Acta Tropica
28
,
80
–.
Hecker
H.
,
Freyvogel
T. A.
,
Briegel
H.
,
Steiger
R.
(
1971
).
The ultrastructure of midgut epithelium in Aedes aegypti (L.) (Insecta, Diptera) males
.
Acta Tropica
28
,
275
–.
Hecker
H.
,
Rudin
W.
(
1979
).
Normal versus -amanitin induced cellular dynamics of the midgut epithelium in female Aedes aegypti L. (Insecta, Diptera) in response to blood feeding
.
Eur. J. Cell Biol
19
,
160
–.
Houk
E. J.
(
1977
).
Midgut ultrastructure of Culex tarsalis (Diptera: Culcidae) before and after a bloodmeal
.
Tissue & Cell
9
,
103
–.
Jepson
M. A.
,
Clark
M. A.
(
1998
).
Studying M cells and their role in infection
.
Trends Microbiol
6
,
359
–.
Kaushal
D. C.
,
Carter
R.
,
Howard
R. J.
,
McAuliffe
F. M.
(
1983
).
Characterization of antigens on mosquito midgut stages of Plasmodium gallinaceum. I. Zygote surface antigens
.
Mol. Biochem. Parasitol
8
,
53
–.
Lane
N. J.
,
Harrison
J. B.
(
1979
).
An unusual cell surface modification: a double plasma membrane
.
J. Cell Sci
39
,
355
–.
Lis
H.
,
Sela
B. A.
,
Sachs
L.
,
Sharon
N.
(
1970
).
Specific inhibition by N-acetyl-D-galactosamine of the interaction between soybean agglutinin and animal cell surfaces
.
Biochim. Biophys. Acta
211
,
582
–.
Lotan
R.
,
Skutelsky
E.
,
Danon
D.
,
Sharon
N.
(
1975
).
The purification, composition and specificity of the anti-T lectin from peanut (Arachis hypogaea)
.
J. Biol. Chem
250
,
8518
–.
Pappo
J.
,
Steger
H. J.
,
Owen
R. L.
(
1988
).
Differential adherence of epithelium overlying gut-associated lymphoid tissue: an ultrastructural study
.
Lab. Invest
58
,
692
–.
Pereira
M. E.
,
Kabat
E. A.
,
Sharon
N.
(
1974
).
H. ZIELERANDOTHERS1611Aedes mosquito midgut surface structure Immunochemical studies on the specificity of soybean agglutinin
.
Carbohydr. Res
37
,
89
–.
Perrone
J. B.
,
Spielman
A.
(
1988
).
Time and site of assembly of the peritrophic membrane of the mosquito Aedes aegypti
.
Cell Tissue Res
252
,
473
–.
Peters
B. P.
,
Ebisu
S.
,
Goldstein
I. J.
,
Flashner
M.
(
1979
).
Interaction of wheat germ agglutinin with sialic acid
.
Biochemistry
18
,
5505
–.
Reinhardt
C.
,
Hecker
H.
(
1973
).
Structure and function of the basal lamina and of the cell junctions in the midgut epithelium (stomach) of female Aedes aegypti L. (Insecta, Diptera)
.
Acta Tropica
30
,
213
–.
Richards
A. G.
,
Richards
P. A.
(
1971
).
Origin and composition of the peritrophic membrane of the mosquito, Aedes aegypti
.
J. Insect Physiol
17
,
2253
–.
Richards
A. G.
,
Richards
P. A.
(
1977
).
The peritrophic membranes of insects
.
Annu. Rev. Ent
22
,
219
–.
Richardson
M. W.
,
Romoser
W. S.
(
1972
).
The formation of the peritrophic membrane in adult Aedes triseriatus (Say) (Diptera: Culicidae)
.
J. Med. Ent
9
,
495
–.
Roberts
R. L.
,
Cabib
E.
(
1982
).
Serratia marcescens chitinase: one-step purification and use for the determination of chitin
.
Analyt. Biochem
127
,
402
–.
Roth
T. F.
,
Porter
K. R.
(
1964
).
Yolk protein uptake in theoocyte of the mosquito Aedes aegypti L
.
J. Cell Biol
20
,
313
–.
Rudin
W.
,
Hecker
H.
(
1979
).
Functional morphology of the midgut of Aedes aegypti L. (Insecta, Diptera) during blood digestion
.
Cell Tissue Res
200
,
193
–.
Rudin
W.
,
Hecker
H.
(
1989
).
Lectin-binding sites in the midgut of the mosquitoes Anopheles stephensi Liston and Aedes aegypti L. (Diptera: Culicidae)
.
Parasitol. Res
75
,
268
–.
Shahabuddin
M.
,
Criscio
M.
,
Kaslow
D. C.
(
1995
).
Unique specificity of in vitro inhibition of mosquito midgut trypsin-like activity correlates with in vivo inhibition of malaria parasite infectivity
.
Exp. Parasitol
80
,
212
–.
Shahabuddin
M.
,
Gayle
M.
,
Zieler
H.
,
Laughinghouse
A.
(
1997
).
Plasmodium gallinaceum: fluorescent staining of zygotes and ookinetes to study malaria parasites in the mosquito
.
Exp. Parasitol
88
,
79
–.
Shahabuddin
M.
,
Kaslow
D. C.
(
1994
).
Biology of the development of Plasmodium in the mosquito midgut: a molecular and cellular view
.
Bull. Inst. Pasteur
92
,
119
–.
Shahabuddin
M.
,
Pimenta
P. F.
(
1998
).
Plasmodiumgallinaceum preferentially invades vesicular ATPase-expressing cells in Aedes aegypti midgut
.
Proc. Natl. Acad. Sci. USA
95
,
3385
–.
Shibuya
N.
,
Goldstein
I. J.
,
Broekaert
W. F.
,
Nsimba-Lubaki
M.
,
Peeters
B.
,
Peumans
W. J.
(
1987
).
The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2–6)Gal/GalNAc sequence
.
J. Biol. Chem
262
,
1596
–.
Stierhof
Y.-D.
,
Bates
P. A.
,
Jacobson
R. L.
,
Rogers
M. E.
,
Schlein
Y.
,
Handman
E.
,
Ilg
T.
(
1999
).
Filamentous proteophosphoglycan secreted by Leishmania promastigotes forms gel-like three-dimensional networks that obstruct the digestive tract of infected sandfly vectors
.
Eur. J. Cell Biol
78
,
675
–.
Trier
J. S.
(
1991
).
Structure and function of intestinal M cells
.
Gastroenterol. Clin. North Am
20
,
531
–.
Veenstra
J. A.
,
Lau
G. W.
,
Agricola
H.-J.
,
Petzel
D. H.
(
1995
).
Immunohistological localization of regulatory peptides in the midgut of the female mosquito Aedes aegypti
.
Histochem. Cell Biol
104
,
337
–.
Wang
W. C.
,
Cummings
R. D.
(
1988
).
The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid linked alpha-2,3 to penultimate galactose residues
.
J. Biol. Chem
263
,
4576
–.
Weaver
S. C.
,
Scott
T. W.
(
1990
).
Ultrastructural changes in the abdominal midgut of the mosquito Culiseta melanura, during the gonotrophic cycle
.
Tissue & Cell
22
,
895
–.
Wu
A. M.
,
Sugii
S. J.
,
Herp
A.
(
1988
).
A guide for carbohydrate specificities of lectins
.
Adv. Exp. Med. Biol
228
,
819
–.
Yamamoto
K.
,
Tsuji
T.
,
Matsumoto
I.
,
Osawa
T.
(
1981
).
Structural requirements for the binding of oligosaccharides and glycopeptides to immobilized wheat germ agglutinin
.
Biochemistry
20
,
5894
–.
Zieler
H.
,
Garon
C. F.
,
Fischer
E. R.
,
Shahabuddin
M.
(
1998
).
Adhesion of Plasmodium gallinaceum ookinetes to the Aedes aegypti midgut: sites of parasite attachment and morphological changes in the ookinete
.
J. Euk. Microbiol
45
,
512
–.
Zieler
H.
,
Nawrocki
J. P.
,
Shahabuddin
M.
(
1999
).
Plasmodium gallinaceum ookinetes adhere specifically to the midgut epithelium of Aedes aegypti by interaction with a carbohydrate ligand
.
J. Exp. Biol
202
,
485
–.
This content is only available via PDF.