ATP, the universal carrier of cell energy, is manufactured from ADP and phosphate by the enzyme ATP synthase using the free energy of an electrochemical gradient of protons (or Na(+)). The proton-motive force consists of two components, the transmembrane proton concentration gradient (delta pH) and the membrane potential. The two components were considered to be not only thermodynamically but also kinetically equivalent, since the chloroplast ATP synthase appeared to operate on delta pH only. Recent experiments demonstrate, however, that the chloroplast ATP synthase, like those of mitochondria and bacteria, requires a membrane potential for ATP synthesis. Hence, the membrane potential and proton gradient are not equivalent under normal operating conditions far from equilibrium. These conclusions are corroborated by the finding that only the membrane potential induces a rotary torque that drives the counter-rotation of the a and c subunits in the F(o) motor of Propionigenium modestum ATP synthase.
Crucial role of the membrane potential for ATP synthesis by F(1)F(o) ATP synthases
P. Dimroth, G. Kaim, U. Matthey; Crucial role of the membrane potential for ATP synthesis by F(1)F(o) ATP synthases. J Exp Biol 1 January 2000; 203 (1): 51–59. doi: https://doi.org/10.1242/jeb.203.1.51
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3772)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3772)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3772)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
An accelerometer-derived ballistocardiogram method for detecting heart rate in free-ranging marine mammals
-Whales.jpg?versionId=3772)
Max Czapanskiy and co show how the resting heart rates of blue whales are immortalized in the accelerometry traces collected by motion sensing data tags.
Global change and physiological challenges for Amazonian fish
-Review.png?versionId=3772)
In their Review, Adalberto Luis Val and Chris Wood discuss the physiological threats to the unique and diverse fish fauna of Amazonia.