This study examined the relationship between ontogenetic increase in body size and the kinematics of peristaltic locomotion by the earthworm Lumbricus terrestris, a soft-bodied organism supported by a hydrostatic skeleton. Whereas the motions of most vertebrates and arthropods are based primarily on the changes in the joint angles between rigid body segments, the motions of soft-bodied organisms with hydrostatic skeletons are based primarily on the changes in dimensions of the deformable body segments themselves. The overall kinematics of peristaltic crawling and the dynamic shape changes of individual earthworm segments were measured for individuals ranging in body mass (mb) by almost three orders of magnitude (0.012-8.5 g). Preferred crawling speed varied both within and among individuals: earthworms crawled faster primarily by taking longer strides, but also by taking more strides per unit time and by decreasing duty factor. On average, larger worms crawled at a greater absolute speed than smaller worms (U p2finity mb0.33) and did so by taking slightly longer strides (l p2finity mb0.41, where l is stride length) than expected by geometric similarity, using slightly lower stride frequencies (f p2finity mb-0.07) and the same duty factor (df p2finity mb-0.03). Circumferential and longitudinal body wall strains were generally independent of body mass, while strain rates changed little as a function of body mass. Given the extent of kinematic variation within and among earthworms, the crawling of earthworms of different sizes can be considered to show kinematic similarity when the kinematic variables are normalized by body length. Since the motions of peristaltic organisms are based primarily on changes in the dimensions of the deformable body wall, the scaling of the material properties of the body wall is probably an especially important determinant of the scaling of the kinematics of locomotion.

REFERENCES

REFERENCES
Bennett
A. F.
,
Garland
T.
,
Else
P. L.
(
1989
).
Individual correlation of morphology, muscle mechanics and locomotion in a salamander
.
Am. J. Physiol
256
,
1200
–.
Berrigan
D.
,
Lighton
J. R. B.
(
1993
).
Bioenergetic and kinematic consequences of limblessness in larval Diptera
.
J. Exp. Biol
179
,
245
–.
Brackenbury
J.
(
1997
).
Caterpillar kinematics
.
Nature
390
,
453
–.
Burr
A. H. J.
,
Gans
C.
(
1988
).
Mechanical significance of obliquely striated architecture in nematode muscle
.
Biol. Bull
194
,
1
–.
Casey
T. M.
(
1991
).
Energetics of caterpillar locomotion: Biomechanical constraints of a hydraulic skeleton
.
Science
252
,
112
–.
Chapman
G.
(
1950
).
On the movement of worms
.
J. Exp. Biol
27
,
29
–.
Chapman
G.
(
1958
).
The hydrostatic skeleton in the invertebrates
.
Biol. Rev
33
,
338
–.
Clark
R. B.
,
Cowey
J. B.
(
1958
).
Factors controlling the change of shape of certain nemertean and turbellarian worms
.
J. Exp. Biol
35
,
731
–.
Delcomyn
F.
(
1980
).
Neural basis of rhythmic behavior in animals
.
Science
210
,
492
–.
Drucker
E. G.
,
Jensen
J. S.
(
1996
).
Pectoral fin locomotion in the striped surfperch. II. Scaling swimming kinematics and performance at a gait transition
.
J. Exp. Biol
199
,
2243
–.
Gray
J.
,
Lissmann
H. W.
(
1938
).
Studies in locomotion. VII. Locomotory reflexes in the earthworm
.
J. Exp. Biol
15
,
506
–.
Heffernan
J. M.
,
Wainwright
S. A.
(
1974
).
Locomotion of the holothurian Euapta lappa and redefinition of peristalsis
.
Biol. Bull
147
,
95
–.
Heglund
N. C.
,
Taylor
C. R.
(
1988
).
Speed, stride frequency and energy cost per stride: how do they change with body size and gait?
.
J. Exp. Biol
138
,
301
–.
Heglund
N. C.
,
Taylor
C. R.
,
McMahon
T. A.
(
1974
).
Scaling stride frequency and gait to animal size: mice to horses
.
Science
186
,
1112
–.
Hidaka
T.
,
Kuriyama
H.
,
Yamamoto
T.
(
1969
).
The mechanical properties of the longitudinal muscle in the earthworm
.
J. Exp. Biol
50
,
431
–.
Hill
A. V.
(
1950
).
The dimensions of animals and their muscular dynamics
.
Sci. Prog
38
,
209
–.
Huey
R. B.
,
Hertz
P. E.
(
1982
).
Effects of body size and slope on sprint speed of a lizard (Stellio (Agama) stellio)
.
J. Exp. Biol
97
,
401
–.
Keller
J. B.
,
Falkovitz
M. S.
(
1983
).
Crawling of worms
.
J. Theor. Biol
104
,
417
–.
Kram
R.
,
Taylor
C. R.
(
1990
).
Energetics of running: A new perspective
.
Nature
346
,
265
–.
Lissmann
H. W.
(
1945
).
The mechanism of locomotion in gastropod molluscs. I. Kinematics
.
J. Exp. Biol
21
,
58
–.
Maitland
D. P.
(
1992
).
Locomotion by jumping in the Mediterranean fruit-fly larva Ceratitis capitata
.
Nature
355
,
159
–.
Marsh
R. L.
(
1988
).
Ontogenesis of contractile properties of skeletal muscle and sprint performance in the lizard Dipsosaurus dorsalis
.
J. Exp. Biol
137
,
119
–.
McMahon
T.
(
1973
).
Size and shape in biology
.
Science
179
,
1201
–.
McMahon
T. A.
(
1975
).
Using body size to understand the structural design of animals: Quadrupedal locomotion
.
J. Appl. Physiol
39
,
619
–.
Miller
J. B.
(
1975
).
The length—tension relationship of the dorsal longitudinal muscle of the leech
.
J. Exp. Biol
62
,
43
–.
Milligan
B. J.
,
Curtin
N. A.
,
Bone
Q.
(
1997
).
Contractile properties of obliquely striated muscle from the mantle of squid (Alloteuthis subulata) and cuttlefish (Sepia officinalis)
.
J. Exp. Biol
200
,
2425
–.
Newell
G. E.
(
1950
).
The role of the coelomic fluid in the movements of earthworms
.
J. Exp. Biol
27
,
110
–.
Pennycuick
C. J.
(
1975
).
On the running of the gnu and other animals
.
J. Exp. Biol
63
,
775
–.
Queathem
E.
(
1991
).
The ontogeny of grasshopper jumping performance
.
J. Insect Physiol
37
,
129
–.
Quillin
K. J.
(
1998
).
Ontogenetic scaling of hydrostatic skeletons: geometric, static stress and dynamic stress scaling of the earthworm Lumbricus terrestris
.
J. Exp. Biol
201
,
1871
–.
Richard
B. A.
,
Wainwright
P. C.
(
1995
).
Scaling of the feeding mechanism of largemouth bass (Mictropterus salmoides). I. Kinematics of prey capture
.
J. Exp. Biol
198
,
419
–.
Rome
L. C.
(
1992
).
Scaling of muscle fibres and locomotion
.
J. Exp. Biol
168
,
243
–.
Rubin
C. T.
,
Lanyon
L. E.
(
1984
).
Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling
.
J. Theor. Biol
107
,
321
–.
Tashiro
N.
(
1971
).
Mechanical properties of the longitudinal and circular muscle in the earthworm
.
J. Exp. Biol
54
,
101
–.
This content is only available via PDF.