Micromolar concentrations of adenosine triphosphate (ATP) and its non-hydrolyzable analog β- γ -methylene ATP are both effective depolarizing chemorepellents in Tetrahymena thermophila. Chemorepellent behavior consists of repeated bouts of backward swimming (avoidance reactions) that can easily be quantified to provide a convenient bioassay for purinergic reception studies. Chemosensory adaptation occurs following prolonged exposure (10 min) to the repellents, and cells regain normal swimming behavior. Adaptation is specific since cells that are behaviorally adapted to either ATP or β- γ -methylene ATP still retain full responsiveness to the chemorepellents GTP and lysozyme. However, cross adaptation occurs between ATP and β- γ -methylene ATP, suggesting that they involve the same receptor. Behavioral sensitivity to both ATP and β- γ -methylene ATP is increased by the addition of Na+, but addition of either Ca2+ or Mg2+ dramatically decreases the response to ATP. These ionic effects are correlated with in vivo ATP hydrolysis, suggesting that divalent ions decrease purinergic sensitivity by activating a Ca2+- or Mg2+-dependent ecto-ATPase to hydrolyze the ATP signal. In vivo [32P]ATP binding studies and Scatchard analysis suggest that the behavioral adaptation is due to a decrease in the number of surface binding sites, as represented by decreased Bmax values. All these changes are reversible (de-adaptation) after 12 min in a repellent-free buffer. Electrophysiological analysis showed that both β- γ -methylene ATP (10 micromol l-1) and ATP (500 micromol l-1) elicited sustained, reversible depolarizations while GTP (10 micromol l-1) produced a transient depolarization, suggesting that the chemosensory response pathways for ATP and GTP reception may differ. There may be separate ATP and GTP receptors since ATP and GTP responses do not cross-adapt and ‘cold’ (unlabeled) GTP is not a good inhibitor of [32P]ATP binding. These results suggests that T. thermophila possess high-affinity surface receptors for ATP that are down-regulated during chemosensory adaptation. These ATP receptors may act as chemorepellent receptors to enable T. thermophila to recognize recently lysed cells and avoid a possibly deleterious situation. This is the simplest eukaryotic organism to show an electrophysiological response to external ATP.

Banno
Y.
,
Yano
K.
,
Nozawa
Y.
(
1982
).
Biochemical characterization of secreted proteases during growth in416 Tetrahymena thermophila pyriformis WH-14: Comparison of extracellular and intracellular proteases
.
J. Protozool
29
,
91
–.
Brake
A. J.
,
Wagenbach
M. J.
,
Julius
D.
(
1994
).
New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor
.
Nature
371
,
519
–.
Burnstock
G.
(
1972
).
Puringeric nerves
.
Pharmac. Rev
24
,
509
–.
Burnstock
G.
(
1996
).
Development and perspectives of the purinoceptor concept
.
J. Autonom. Pharmac
16
,
295
–.
Clark
K.
,
Hennessey
T. M.
,
Nelson
D. L.
(
1993
).
External GTP alters the motility and elicits an oscillating membrane depolarization in Paramecium tetraurelia
.
Proc. Natl. Acad. Sci. USA
90
,
3782
–.
Clark
K. D.
,
Hennessey
T. M.
,
Nelson
D. L.
,
Preston
R. R.
(
1997
).
Extracellular GTP causes membrane potential oscillations through the parallel activation of Mg2+and Na+currents in Parameciumtetraurelia
.
J. Membr. Biol
157
,
159
–.
Csaba
G.
(
1985
).
The unicellular Tetrahymena thermophila as a model cell for receptor research
.
Int. Rev. Cytol
95
,
327
–.
Danziger
R. S.
,
Raffaeli
S.
,
Moreno-Sanchez
R.
,
Sakai
M.
,
Capogrossi
M. C.
,
Spurgeon
H. A.
,
Lakatta
E. G.
(
1988
).
Extracellular ATP has a potent effect to enhance cytosolic calcium and contractility in single ventricular myocytes
.
Cell Calcium
9
,
193
–.
Dentler
W. L.
(
1988
).
Fractionation of Tetrahymena thermophila ciliary membranes with Triton X-114 and the identification of a ciliary membrane ATPase
.
J. Cell Biol
107
,
2679
–.
Dryl
S.
(
1952
).
The dependence of chemotropism in Paramecium caudatum on the chemical changes in the medium
.
Acta Biol. Exp
16
,
23
–.
Dubyak
G. R.
,
El-Moatassim
C.
(
1993
).
Signal transduction via P2-purinergic receptor for extracellular ATP and other nucleotides
.
Am. J. Physiol
265
,
577
–.
Edwards
F. A.
,
Gibb
A. J.
,
Colquhoun
D.
(
1992
).
ATP receptor-mediated synaptic currents in the central nervous system
.
Nature
359
,
144
–.
Evans
R. J.
,
Derkach
V.
,
Surprenant
A.
(
1992
).
ATP mediates fast synaptic transmission in mammalian neurons
.
Nature
357
,
503
–.
Francis
J. T.
,
Hennessey
T. M.
(
1995
).
Chemorepellents in Paramecium tetraurelia and Tetrahymena thermophila
.
J. Euk. Microbiol
42
,
78
–.
Harden
T. K.
,
Boyer
J. L.
,
Nicholas
R. A.
(
1995
).
P2-purinergic receptors: Subtype-associated signalling responses and structure
.
Annu. Rev. Pharmac. Toxicol
35
,
541
–.
He
Z.
,
Tessier-Lavigne
M.
(
1997
).
Neuropilin is a receptor for the axonal chemorepellent Semaphorin III
.
Cell
90
,
739
–.
Hennessey
T. M.
,
Kim
M. Y.
,
Satir
B. H.
(
1995
).
Lysozyme acts as a chemorepellent and secretagogue in Paramecium tetraurelia by activating a novel receptor-operated Ca2+conductance
.
J. Membr. Biol
148
,
13
–.
Hennessey
T. M.
,
Kung
C.
(
1987
).
A single calcium-dependentpotassium current is increased by a single-gene mutation in Paramecium tetraurelia
.
J. Membr. Biol
98
,
145
–.
Kim
M. Y.
,
Kuruvilla
H. G.
,
Hennessey
T. M.
(
1997
).
Chemosensory adaptation in Paramecium tetraurelia involves changes in both repellent binding and the consequent receptor potentials
.
Comp. Biochem. Physiol
118
,
589
–.
Kolodkin
A. L.
,
Levengood
D. V.
,
Rowe
E. G.
,
Tai
Y.-T.
,
Giger
R. J.
,
Ginty
D. D.
(
1997
).
Neuropilin is a Semphorin III receptor
.
Cell
90
,
753
–.
Lanzetta
P. A.
,
Alvarez
L. J.
,
Reinach
P. S.
,
Candia
O. A.
(
1979
).
An improved assay for nanomole amounts of inorganic phosphate
.
Analyt. Biochem
100
,
95
–.
Messersmith
E. K.
,
Leonardo
E. D.
,
Shatz
C. J.
,
Tessier-Lavigne
M.
,
Goodman
C. S.
,
Kolodkin
A. L.
(
1995
).
Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord
.
Neuron
14
,
949
–.
Mimikakis
J. L.
,
Nelson
D. L.
,
Preston
R. R.
(
1998
).
Oscillating response to a purine nucleotide disrupted by mutation in Paramecium tetraurelia
.
Biochem. J
330
,
139
–.
Oka
T.
,
Nakaoka
Y.
,
Oosawa
F.
(
1986
).
Changes in membrane potential during adaptation to external potassium ions in Paramecium caudatum
.
J. Exp. Biol
126
,
111
–.
Plesner
L.
(
1995
).
Ecto-ATPase: Identities and functions
.
Int. Rev. Cytol
158
,
141
–.
Preston
R. R.
,
Hammond
J. A.
(
1998
).
Long-term adaptation of Ca2+-dependent behavior in Paramecium tetraurelia
.
J. Exp. Biol
201
,
1835
–.
Scatchard
G.
(
1949
).
The attraction of proteins for small molecules and ions
.
Ann. N.Y. Acad. Sci
51
,
660
–.
Smith
T. M.
,
Kirley
T. L.
,
Hennessey
T. M.
(
1997
).
A soluble ecto-ATPase from Tetrahymena thermophila: purification and similarity to the membrane-bound ecto-ATPase of smooth muscle
.
Arch. Biochem. Biophys
337
,
351
–.
Soto
F.
,
Garciaguzman
M.
,
Stuhmer
W.
(
1997
).
Cloned ligand-gated channels activated by extracellular ATP (P2X receptors)
.
J. Membr. Biol
160
,
91
–.
Valera
S.
,
Hussy
N.
,
Evans
R. J.
,
Adami
N.
,
North
R. A.
,
Surprenant
A.
,
Buell
G.
(
1994
).
A new class of ligand-gated ion channel defined by P2Xreceptor for extracellular ATP
.
Nature
371
,
516
–.
White
T. D.
(
1988
).
Role of adenine compounds in autonomic neurotransmission
.
Pharmac. Ther
38
,
129
–.
This content is only available via PDF.