An analysis is presented of body curvature, acceleration and muscle strain during fast-starts in the common carp (Cyprinus carpio L.). C- and S-starts were filmed at 200 frames s-1 at 23 degreesC. Curvatures and accelerations of mid-body axes were calculated from digitised outlines. Maximum accelerations at 0.3 FL (fork length) from the snout were 54 m s-2 for C-starts and 40 m s-2 for S-starts. The total turning angle was approximately 150 degrees in C-starts. This angle was 70 degrees during escape S-starts, significantly larger than for predatory S-starts in other species. Sarcomere strains of axial muscle fibres were calculated at 0.4 and 0.8 FL. During C-starts, white muscle fibres were exposed to maximum sarcomere strains of up to approximately 16 %, and posterior fibres had similar strains to anterior fibres (red 27 %; white 16 %). During S-starts, however, maximum strains in anterior fibres (red 39 %; white 24 %) were more than twice those in posterior fibres (red 17 %; white 10 %). In a C-start, the fish made a large turning angle directed away from the stimulus by bending its tail strongly and thereby producing a large thrust. A larger anterior peak curvature of the fish during S-starts enabled the carp to control the direction of escape better than during C-starts, but with lower accelerations and smaller turning angles. During cyclic and intermittent swimming, red posterior fibres experienced the largest strains. Interestingly, previous studies have shown these fibres to have the lowest passive stiffness and the largest titin isoform, allowing them to attain large strain amplitudes with relatively low passive tensions.

Coughlin
D. J.
,
Valdes
L.
,
Rome
L. C.
(
1996
).
Muscle length changes during swimming in scup: sonomicrometry verifies the anatomical high-speed cine technique
.
J. Exp. Biol
199
,
459
–.
Domenici
P.
,
Blake
R. W.
(
1991
).
The kinematics and performance of the escape response in the angelfish (Pterophyllum eimekei)
.
J. Exp. Biol
156
,
187
–.
Domenici
P.
,
Blake
R. W.
(
1993
).
Escape trajectories in angelfish (Pterophyllum eimekei)
.
J. Exp. Biol
177
,
253
–.
Domenici
P.
,
Blake
R. W.
(
1993
).
The effect of size on the kinematics and performance of angelfish (Pterophyllum eimekei) escape responses
.
Can. J. Zool
71
,
2319
–.
Domenici
P.
,
Blake
R. W.
(
1997
).
The kinematics and performance of fish fast-start swimming
.
J. Exp. Biol
200
,
1165
–.
Eaton
R. C.
,
Bombardiere
R. A.
,
Meyer
D. L.
(
1977
).
The Mauthner-initiated startle response in teleost fish
.
J. Exp. Biol
66
,
65
–.
Frith
H. R.
,
Blake
R. W.
(
1991
).
Mechanisms in the startle response in the northern pike, Esox lucius
.
Can. J. Zool
69
,
2831
–.
Furst
D. O.
,
Osborne
M.
,
Nave
R.
,
Weber
K.
(
1988
).
The organisation of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of406ten nonrepetitive epitopes starting at the Z-line extends close to the M-line
.
J. Cell Biol
106
,
1563
–.
Granzier
H. L. M.
,
Helmes
M.
,
Trombitás
K.
(
1996
).
Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics
.
Biophys. J
70
,
430
–.
Harper
D. G.
,
Blake
R. W.
(
1990
).
Fast-start performance of rainbow trout Salmo gairdneri and northern pike Esox lucius
.
J. Exp. Biol
150
,
321
–.
Hoogland
R.
,
Morris
D.
,
Tinbergen
N.
(
1956
).
The spines of sticklebacks (Gasterosteus and Pygosteus) as a means of defence against predators (Perca and Esox)
.
Behaviour
10
,
205
–.
Johnston
I. A.
,
van Leeuwen
J. L.
,
Davies
M. L. F.
,
Beddow
T.
(
1995
).
How fish power predation fast-starts
.
J. Exp. Biol
198
,
1851
–.
Kasapi
M. A.
,
Domenici
P.
,
Blake
R. W.
,
Harper
D.
(
1993
).
The kinematics and performance of escape responses of the knifefish Xenomystus nigri
.
Can. J. Zool
71
,
189
–.
Kimmel
C. B.
,
Eaton
R. C.
,
Powell
S. L.
(
1980
).
Decreased fast-start performance of zebrafish larvae lacking Mauthner neurons
.
J. Comp. Physiol
140
,
343
–.
Maruyama
K.
(
1986
).
Connectin, an elastic filamentous protein of striated muscle
.
Int. Rev. Cytol
104
,
81
–.
Maruyama
K.
(
1994
).
Connectin, an elastic protein of striated muscle
.
Biophys. Chem
50
,
73
–.
Page
S. G.
,
Huxley
H. E.
(
1963
).
Filament lengths in striated muscle
.
J. Cell Biol
19
,
369
–.
Rome
L. C.
,
Funke
R. P.
,
Alexander
R. McN.
,
Lutz
G.
,
Aldridge
H.
,
Scott
F.
,
Freadman
M.
(
1988
).
Why animals have different muscle fibre types
.
Nature
335
,
824
–.
van Leeuwen
J. L.
(
1995
).
The action of muscles in swimming fish
.
Exp. Physiol
80
,
177
–.
van Leeuwen
J. L.
,
Lankheet
M. J. M.
,
Akster
H. A.
,
Osse
J. W. M.
(
1990
).
Function of red axial muscles of carp (Cyprinus carpio): recruitment and normalised power output during swimming in different modes
.
J. Zool.,. Lond
220
,
123
–.
Wang
K.
,
McCarter
R.
,
Wright
J.
,
Beverly
J.
,
Ramírez-Mitchell
R.
(
1991
).
Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension
.
Proc. Natl. Acad. Sci. USA
88
,
7101
–.
Wang
K.
,
McCarter
R.
,
Wright
J.
,
Beverly
J.
,
Ramírez-Mitchell
R.
(
1993
).
Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin—myosin composite is a dual-stage molecular spring
.
Biophys. J
64
,
1161
–.
Webb
P. W.
(
1975
).
Acceleration performance of rainbow trout Salmo gairdneri and green sunfish Lepomis cyanellus
.
J. Exp. Biol
63
,
451
–.
Webb
P. W.
(
1976
).
The effect of size on the fast-start performance of rainbow trout Salmo gairdneri and a consideration of piscivorous predator—prey interactions
.
J. Exp. Biol
65
,
157
–.
Webb
P. W.
(
1978
).
Fast-start performance and body form in seven species of teleost fish
.
J. Exp. Biol
74
,
211
–.
Weihs
D.
(
1973
).
The mechanism of rapid starting of slender fish
.
Biorheology
10
,
343
–.
This content is only available via PDF.