Small-scale components of the equine hoof wall were tested to determine their mechanical roles in the morphological hierarchy. Macroscale tensile tests conducted on samples of the inner wall tubules and intertubular material showed a sixfold difference in mean initial stiffnesses (0.47 and 0.08 GPa, respectively), indicating that the inner wall tubules stiffen the wall along its longitudinal axis. The similarity in material properties of tubule and intertubular samples from the mid-wall suggests that tubules in this region offer only minor reinforcement along the longitudinal axis.Microscale tests conducted on rows of keratin strands from the inner wall tubules and intertubular material, and on intertubular keratin strands of the mid-wall, produced estimates of the stiffnesses of the hydrated matrix (0.03 GPa) and intermediate filament (IF; 3–4 GPa) components of the nanoscale (α -keratin) composite. The results from these tests also suggest that the properties of the keratin composite vary through the wall thickness. Birefringence measurements on inner wall and mid-wall regions agree with these observations and suggest that, although the keratin IF volume fraction is locally constant, the volume fraction changes through the thickness of the wall. These findings imply that modulation of the hoof wall properties has been achieved by varying the IF volume fraction, countering the effects of specific IF alignments which serve another function and would otherwise adversely affect the modulus of a particular region.

REFERENCES

Bendit
E. G.
,
Gillespie
J. M.
(
1978
).
The probable role and location of high-glycine-tyrosine proteins in the structure of keratins
.
Biopolymers
17
,
2743
–.
Bertram
J. E. A.
,
Gosline
J. M.
(
1986
).
Fracture toughness design in horse hoof keratin
.
J. Exp. Biol
125
,
29
–.
Bertram
J. E. A.
,
Gosline
J. M.
(
1987
).
Functional design of horse hoof keratin: the modulation of mechanical properties through hydration effects
.
J. Exp. Biol
130
,
121
–.
Cook
J.
,
Gordon
J. E.
(
1964
).
A mechanism for the control of cracks in brittle systems
.
Proc. R. Soc. Ser. A
282
,
508
–.
Fraser
R. D. B.
,
MacRae
T. P.
(
1980
).
Molecular structure and mechanical properties of keratins
. In
The Mechanical Properties of Biological Materials
(ed.
Vincent
J. F. V.
,
Currey
J. D.
).
Cambridge
:
Cambridge University Press
. Symp. Soc. Exp. Biol
34
,
211
–.
Fraser
R. D. B.
,
Parry
D. A. D.
(
1993
).
Keratin intermediate filament structure
.
J. Mol. Biol
230
,
436
–.
Grosenbaugh
D. A.
,
Hood
D. M.
(
1992
).
Keratin and associated proteins of the equine hoof wall
.
Am. J. Vet. Res
10
,
1859
–.
Harris
B.
(
1980
).
The mechanical behaviour of composite materials
. In
The Mechanical Properties of Biological Materials
(ed.
Vincent
J. F. V.
,
Currey
J. D.
).
Cambridge
:
Cambridge: University Press
. Symp. Soc. Exp. Biol
34
,
37
–.
Kasapi
M. A.
,
Gosline
J. M.
(
1996
).
Strain-rate-dependent mechanical properties of the equine hoof wall
.
J. Exp. Biol
199
,
1133
–.
Kasapi
M. A.
,
Gosline
J. M.
(
1997
).
Design complexity and fracture control in the equine hoof wall
.
J. Exp. Biol
200
,
1639
–.
Kasapi
M. A.
,
Gosline
J. M.
(
1998
).
Exploring the possible functions of equine hoof wall tubules
.
Equine vet. J
26
,
10
–.
Katz
S. L.
,
Gosline
J. M.
(
1992
).
Ontogenetic scaling and mechanical behavior of the tibiae of the African desert locust (Schistocerca gregaria)
.
J. Exp. Biol
168
,
125
–.
Landeau
L. J.
,
Barrett
D. J.
,
Batterman
S. C.
(
1983
).
Mechanical properties of equine hooves
.
Am. J. Vet. Res
44
,
100
–.
Matoltsy
A. G.
(
1975
).
Desmosomes, filaments and keratohyalin granules: their role in the stabilization and keratinization of the epidermis
.
J. Invest. Dermatol
65
,
127
–.
Parry
D. A. D.
(
1995
).
Hard-keratin IF: a structural model lacking a head-to-tail molecular overlap but having hybrid features characteristic of both epidermal keratin and vimentin IF
.
Proteins
22
,
267
–.
Ryder
M. L.
(
1962
).
Structure of rhinoceros horn
.
Nature
193
,
1199
–.
Steinert
P. M.
(
1991
).
Organization of coiled-coil molecules in native mouse keratin 1/keratin 10 intermediate filaments: evidence for alternating rows of antiparallel in-register and antiparallel staggered molecules
.
J. Struct. Biol
107
,
157
–.
Steinert
P. M.
,
Marekov
L. N.
,
Fraser
R. D. B.
,
Parry
D. A. D.
(
1993
).
Keratin intermediate filament structure
.
J. Mol. Biol
230
,
436
–.
Steinert
P. M.
,
Marekov
L. N.
,
Parry
D. A. D.
(
1993
).
Diversity of intermediate filament structure
.
J. Biol. Chem
268
,
24916
–.
Steinert
P. M.
,
North
A. C. T.
,
Parry
D. A. D.
(
1994
).
Structural features of keratin intermediate filaments
.
J. Invest. Dermatol
103
,
19
–.
Steven
A. C.
,
Steinert
P. M.
(
1994
).
Protein composition of cornified cell envelopes of epidermal keratinocytes
.
J. Cell Sci
107
,
693
–.
This content is only available via PDF.