An evolutionary trend towards increasing hydrophobicity of vertebrate arterial elastins suggests that there is an adaptive advantage to higher hydrophobicity. The swelling and dynamic mechanical properties of elastins from several species were measured to test whether hydrophobicity is associated with mechanical performance. Hydrophobicity was quantified according to amino acid composition (HI), and two behaviour-based indices: the Flory-Huggins solvent interaction parameter (chi1), and a swelling index relating tissue volumes at 60 and 1 degrees C. Swelling index values correlated with chi1 and, for most species studied, with HI, suggesting that the different approaches used to quantify hydrophobicity are equally valid. Dynamic mechanical properties were measured both in a closed system, to control the effects of water content, and in an open system, to determine whether the increased swelling of hydrophobic materials at low temperatures offsets the direct stiffening effect of cold. There were no biologically significant differences in mechanical behaviour in either open or closed systems that could be attributed to hydrophobicity. Therefore, although the original function of hydrophobicity in an ancestral elastin may have been to produce molecular mobility, mechanical performance did not drive a subsequent increase in hydrophobicity. Higher hydrophobicities may have arisen to facilitate the manufacture of the elastic fibre.

REFERENCES

Aaron
B. B.
,
Gosline
J. M.
(
1981
).
Elastin as a random-network elastomer: a mechanical and optical analysis of single elastin fibres
.
Biopolymers
20
,
1247
–.
Bigelow
C. C.
(
1967
).
On the average hydrophobicity of proteins and the relation between it and protein structure
.
J. Theor. Biol
16
,
187
–.
Bull
H. B.
(
1944
).
Adsorption of water vapor by proteins
.
J. Am. Chem. Soc
66
,
1499
–.
Edelhoch
H.
,
Osborne
J. C.
(
1976
).
The thermodynamic basis of the stability of proteins, nucleic acids and membranes
.
Adv. Protein Chem
30
,
183
–.
Gosline
J. M.
(
1978
).
The temperature-dependent swelling of elastin
.
Biopolymers
17
,
697
–.
Gosline
J. M.
,
French
C. J.
(
1979
).
Dynamic mechanical properties of elastin
.
Biopolymers
18
,
2091
–.
Guerette
P. A.
,
Ginzinger
D. G.
,
Weber
B. H.
,
Gosline
J. M.
(
1996
).
Silk properties determined by gland-specific expression of a spider fibroin gene family
.
Science
272
,
112
–.
Hinek
A.
(
1995
).
The 67kDa spliced variant of beta-galactosidase serves as a reusable protective chaperone for tropoelastin
.
Ciba Foundation Symp
192
,
185
–.
Kyte
J.
,
Doolittle
R. F.
(
1982
).
A simple method for displaying the hydropathic character of a protein
.
J. Mol. Biol
157
,
105
–.
Lewis
R. V.
(
1992
).
Spider silk: the unravelling of a mystery
.
Acc. Chem. Res
25
,
392
–.
Lillie
M. A.
,
Chalmers
G. W.
,
Gosline
J. M.
(
1994
).
The effects of heating on the mechanical properties of arterial elastin
.
Connect. Tissue Res
31
,
23
–.
Lillie
M. A.
,
Chalmers
G. W. G.
,
Gosline
J. M.
(
1996
).
Elastin dehydration through the liquid and vapour phase: a comparison of osmotic stress models
.
Biopolymers
39
,
627
–.
Lillie
M. A.
,
David
G. J.
,
Gosline
J. M.
(
1998
).
Mechanical role of elastin-associated microfibrils in pig aortic elastic tissue
.
Connect. Tissue Res
37
,
131
–.
Lillie
M. A.
,
Gosline
J. M.
(
1990
).
The effects of hydration on the dynamic mechanical properties of elastin
.
Biopolymers
29
,
1147
–.
Lillie
M. A.
,
Gosline
J. M.
(
1996
).
Swelling and viscoelastic properties of osmotically stressed elastin
.
Biopolymers
39
,
641
–.
Mistrali
F.
,
Volpin
D.
,
Garibaldi
G. B.
,
Ciferri
A.
(
1971
).
Thermodynamics of elasticity in open systems
.
Elastin. J. Phys. Chem
75
,
142
–.
Nemethy
G.
,
Scheraga
H. A.
(
1962
).
The structure of water and hydrophobic bonding in proteins. III. The thermodynamic properties of hydrophobic bonds in proteins
.
J. Protein Chem
66
,
1773
–.
Parsegian
V. A.
,
Rand
R. P.
,
Fuller
N. L.
,
Rau
D. C.
(
1986
).
Osmotic stress for the direct measurement of intermolecular forces
.
Meth. Enzymol
127
,
400
–.
Robson
P.
,
Wright
G. M.
,
Sitarz
E.
,
Maiti
A.
,
Rawat
M.
,
Youson
J. H.
,
Keeley
F. W.
(
1993
).
Characterization of lamprin, an unusual matrix protein from lamprey cartilage. Implications for evolution, structure, and assembly of elastin and other fibrillar proteins
.
J. Biol. Chem
268
,
1440
–.
Sage
H.
(
1982
).
Structure—function relationships in the evolution of elastin
.
J. Invest. Dermatol
79
,
146
–.
Sage
H.
,
Gray
W. R.
(
1979
).
Studies on the evolution of elastin. I. Phylogenetic distribution
.
Comp. Biochem. Physiol
64
,
313
–.
Sage
H.
,
Gray
W. R.
(
1980
).
Studies on the evolution of elastin. II. Histology
.
Comp. Biochem. Physiol
66
,
13
–.
Sage
H.
,
Gray
W. R.
(
1981
).
Studies on the evolution of elastin. III. The ancestral protein
.
Comp. Biochem. Physiol
68
,
473
–.
Shadwick
R. E.
,
Gosline
J. M.
(
1985
).
Physical and chemical properties of rubber-like elastic fibres from the octopus aorta
.
J. Exp. Biol
114
,
239
–.
Shadwick
R. E.
,
Gosline
J. M.
(
1985
).
Mechanical properties of the octopus aorta
.
J. Exp. Biol
114
,
259
–.
Starcher
B. C.
,
Galione
M. J.
(
1976
).
Purification and composition of elastins from different animal species
.
Analyt. Biochem
74
,
441
–.
Steven
F. S.
,
Minns
R. J.
,
Thomas
H.
(
1974
).
The isolation of chemically pure elastins in a form suitable for mechanical testing
.
Connect. Tissue Res
2
,
85
–.
Tanford
C.
(
1962
).
Contributions of hydrophobic interactions to the stability of the globular conformations of proteins
.
J. Am. Chem. Soc
84
,
4240
–.
Urry
D. W.
,
Gowda
D. C.
,
Parker
T. M.
,
Luan
C.
,
Reid
M. C.
,
Harris
C. M.
,
Pattanaik
A.
,
Harris
R. D.
(
1992
).
Hydrophobicity scale for proteins based on inverse temperature transitions
.
Biopolymers
32
,
1243
–.
Welscher
H. D.
(
1969
).
Correlations between amino acid sequence and conformation of immunoglobin light chains. I. Hydrophobicity and fractional charge
.
Int. J. Protein Res
1
,
253
–.
This content is only available via PDF.