During diving, marine mammals must balance the conservation of limited oxygen reserves with the metabolic costs of swimming exercise. As a result, energetically efficient modes of locomotion provide an advantage during periods of submergence and will presumably increase in importance as the animals perform progressively longer dives. To determine the effect of a limited oxygen supply on locomotor performance, we compared the kinematics and behavior of swimming and diving bottlenose dolphins. Adult bottlenose dolphins (Tursiops truncatus) were trained to swim horizontally near the water surface or submerged at 5 m and to dive to depths ranging from 12 to 112 m. Swimming kinematics (preferred swimming mode, stroke frequency and duration of glides) were monitored using submersible video cameras (Sony Hi-8) held by SCUBA divers or attached to a pack on the dorsal fin of the animal. Drag and buoyant forces were calculated from patterns of deceleration for horizontally swimming and vertically diving animals. The results showed that dolphins used a variety of swimming gaits that correlated with acceleration. The percentage of time spent gliding during the descent phase of dives increased with depth. Glide distances ranged from 7.1+/−1.9 m for 16 m dives to 43.6+/−7.0 m (means +/− s.e.m.) for 100 m dives. These gliding patterns were attributed to changes in buoyancy associated with lung compression at depth. By incorporating prolonged glide periods, the bottlenose dolphin realized a theoretical 10–21 % energetic savings in the cost of a 100 m dive in comparison with dives based on neutral buoyancy models. Thus, modifying locomotor patterns to account for physical changes with depth appears to be one mechanism that enables diving mammals with limited oxygen stores to extend the duration of a dive.

Alexander
R. McN
(
1990
).
Size, speed and buoyancy in aquatic animals
.
Am. Zool
30
,
189
–.
Breder
C. M.
Jr.
(
1965
).
Vortices and fish schools
.
Zoologica
50
,
97
–.
Castellini
M. A.
,
Murphy
B. J.
,
Fedak
M. A.
,
Ronald
K.
,
Gofton
N.
,
Hochachka
P. W.
(
1985
).
Potentially conflicting metabolic demands of diving and exercise in seals
.
J. Appl. Physiol
58
,
392
–.
Daniel
T. L.
(
1984
).
Unsteady aspects of aquatic locomotion
.
Am. Zool
24
,
121
–.
Davis
R. W.
,
Collier
S. O.
,
Hagey
W.
,
Williams
T. M.
,
LeBoeuf
B. J.
(
1999
).
A video system and three dimensional dive recorder for marine mammals: Using video and virtual reality to study diving behavior
.
Proceedings of the Fifth European Conference on Biotelemetry, Strasbourg, France
.
Dunstone
N.
,
O'Connor
R. J.
(
1979
).
Optimal foraging in an amphibious mammal. I. The aqualung effect.
Anim. Behav
27
,
1182
1194
.
Fish
F. E.
(
1993
).
Power output and propulsive efficiency of swimming bottlenose dolphins (Tursiops truncatus)
.
J. Exp. Biol
185
,
179
–.
Fish
F. E.
,
Fegely
J. F.
,
Xanthopoulos
C. J.
(
1991
).
Burst-and-coast swimming in schooling fish (Notemigonus crysoleucas) with implications for energy economy
.
Comp. Biochem. Physiol
100
,
633
–.
Fish
F. E.
,
Innes
S.
,
Ronald
K.
(
1988
).
Kinematics and estimated thrust production of swimming harp and ringed seals
.
J. Exp. Biol
137
,
157
–.
Heglund
N. C.
,
Taylor
C. R.
,
McMahon
T. A.
(
1974
).
Scaling stride frequency and gait to animal size: mice to horses
.
Science
186
,
1112
–.
Hoyt
D. F.
,
Taylor
C. R.
(
1981
).
Gait and the energetics of locomotion in horses
.
Nature
292
,
239
–.
Hui
C. A.
(
1987
).
Power and speed of swimming dolphins
.
J. Mammal
68
,
126
–.
Lang
T. G.
,
Norris
K. S.
(
1966
).
Swimming speed of a Pacific bottlenose dolphin
.
Science
151
,
588
–.
Lighthill
M. J.
(
1971
).
Large-amplitude elongated-body theory of fish locomotion
.
Proc. R. Soc. Lond. B
179
,
125
–.
Lovvorn
J. R.
,
Jones
D. R.
,
Blake
R. W.
(
1991
).
Mechanics of underwater locomotion in diving ducks: drag, buoyancy and acceleration in a size gradient of species
.
J. Exp. Biol
159
,
89
–.
Magana
S. A.
,
Hoyt
D. F.
,
Wickler
S. J.
,
Lewis
C. C.
,
Garcia
S. B.
,
Padilla
O. R.
(
1997
).
The effect of load carrying on preferred trotting speed in horses
.
Am. Zool
37
,
176
–.
Ridgway
S. H.
,
Howard
R.
(
1979
).
Dolphin lung collapse and intramuscular circulation during free diving: Evidence from nitrogen washout
.
Science
206
,
1182
–.
Ridgway
S. H.
,
Scronce
B. L.
,
Kanwisher
J.
(
1969
).
R. C. SKROVANANDOTHERS2761 Biomechanics of diving dolphins Respiration and deep diving in the bottlenose porpoise
.
Science
166
,
1651
–.
Rohr
J.
,
Latz
M. I.
,
Fallon
S.
,
Nauen
J. C.
,
Hendricks
E.
(
1998
).
Experimental approaches towards interpreting dolphin-simulated bioluminescence
.
J. Exp. Biol
201
,
1447
–.
Stahl
W. R.
(
1967
).
Scaling respiratory variables in mammals
.
J. Appl. Physiol
22
,
453
–.
Taylor
C. R.
(
1978
).
Why change gaits? Recruitment of muscles and muscle fibers as a function of speed and gait
.
Am. Zool
18
,
153
–.
Videler
J. J.
,
Kamermans
P.
(
1985
).
Differences between upstroke and downstroke in swimming dolphins
.
J. Exp. Biol
119
,
265
–.
Videler
J. J.
,
Weihs
D.
(
1982
).
Energetic advantages of burst-and-coast swimming of fish at high speeds
.
J. Exp. Biol
97
,
169
–.
Webb
P. M.
,
Crocker
D. E.
,
Blackwell
S. B.
,
Costa
D. P.
,
LeBoeuf
B. J.
(
1998
).
Effects of buoyancy on the diving behavior of northern elephant seals
.
J. Exp. Biol
201
,
2349
–.
Webb
P. W.
(
1984
).
Body form, locomotion and foraging in aquatic vertebrates
.
Am. Zool
24
,
107
–.
Weihs
D.
(
1973
).
Hydromechanics of fish schooling
.
Nature
241
,
290
–.
Weihs
D.
(
1974
).
Energetic advantages of burst swimming of fish
.
J. Theor. Biol
48
,
215
–.
Williams
T. M.
(
1983
).
Locomotion in the North American mink, a semi-aquatic mammal. II. The effect of an elongate body on running energetics and gait pattern
.
J. Exp. Biol
105
,
283
–.
Williams
T. M.
(
1999
).
The evolution of cost efficient swimming in marine mammals: limits to energetic optimization
.
Phil. Trans. R. Soc. Lond. B
354
,
193
–.
Williams
T. M.
,
Friedl
W. A.
,
Fong
M. L.
,
Yamada
R. M.
,
Sedivy
P.
,
Haun
J. E.
(
1992
).
Travel at low energetic cost by swimming and wave-riding bottlenose dolphins
.
Nature
355
,
821
–.
Williams
T. M.
,
Haun
J. E.
,
Friedl
W. A.
(
1999
).
The diving physiology of bottlenose dolphins (Tursiops truncatus). I. Balancing the demands of exercise for energy conservation at depth
.
J. Exp. Biol
202
,
2763
–.
Wilson
R. P.
,
Grant
W. S.
,
Duffy
D. S.
(
1986
).
Recording devices on free-ranging marine animals: does measurement affect foraging performance?
.
Ecology
67
,
1091
–.
This content is only available via PDF.