Lizards commonly move on steep inclines in nature, but no previous studies have investigated whether the kinematics of the limbs of lizards differ on inclined surfaces compared with level surfaces. Therefore, we examined how the kinematics of the hindlimb were affected by both incline (downhill 30 degrees, level and uphill 30 degrees) and different speeds of steady locomotion (50–250 cm s-1) in the morphologically generalized iguanian lizard Dipsosaurus dorsalis. On the uphill surface, the strides of lizards were shorter and quicker than those at a similar speed on the level and downhill surfaces. A multivariate analysis revealed that the kinematics of locomotion on all three inclines were distinct, but several kinematic features of locomotion on the downhill surface were especially unique. For example, downhill locomotion had the lowest angular excursions of femur rotation, and the knee and ankle were flexed more at footfall which contributed to a very low hip height. For D. dorsalis, changes in knee and ankle angles on the uphill surface were similar to those described previously for mammals moving up inclines, despite fundamental differences in limb posture between most mammals and lizards. Several features of the kinematics of D. dorsalis suggest that a sprawling limb enhances the ability to move on inclines.

REFERENCES

Ashley-Ross
M. A.
(
1994
).
Hindlimb kinematics during terrestrial locomotion in a salamander (Dicamptodontenebrosus)
.
J. Exp. Biol
193
,
255
–.
Ashley-Ross
M. A.
(
1994
).
Metamorphic and speed effects on hindlimb kinematics during terrestrial locomotion in the salamander Dicamptodon tenebrosus
.
J. Exp. Biol
193
,
285
–.
Barclay
O. R.
(
1946
).
The mechanics of amphibian locomotion
.
J. Exp. Biol
23
,
177
–.
Bauwens
D.
,
Garland
T. J.
,
Castilla
A. M.
,
Van Damme
R.
(
1995
).
Evolution of sprint speed in lacertid lizards, morphological, physiological and behavioral covariation
.
Evolution
49
,
848
–.
Carothers
J. H.
(
1986
).
An experimental confirmation of morphological adaptation: toe fringes in the sand-dwelling lizard Umascoparia
.
Evolution
40
,
871
–.
Farley
C. T.
,
Emshwiller
M.
(
1996
).
Efficiency of uphill locomotion in nocturnal and diurnal lizards
.
J. Exp. Biol
199
,
587
–.
Farley
C. T.
,
Glasheen
J.
,
McMahon
T. A.
(
1993
).
Running spring: speed and animal size
.
J. Exp. Biol
185
,
71
–.
Fieler
C. L.
,
Jayne
B. C.
(
1998
).
Effects of speed on the hindlimb kinematics of the lizard Dipsosaurusdorsalis
.
J. Exp. Biol
201
,
609
–.
Full
R. J.
,
Tullis
A.
(
1990
).
Energetics of ascent: insects on inclines
.
J. Exp. Biol
149
,
307
–.
Gleeson
T. T.
(
1986
).
Glycogen synthesis from lactate in skeletal muscle of the lizard Dipsosaurusdorsalis
.
J. Comp. Physiol
156
,
277
–.
Gleeson
T. T.
,
Harrison
M. J.
(
1988
).
Muscle composition and its relationship to sprint running in the lizard Dipsosaurusdorsalis
.
Am. J. Physiol
255
,
470
–.
Huey
R. B.
,
Hertz
P. E.
(
1982
).
Effects of body size and slope on sprint speed of a lizard (Stellio (Agama) stellio)
.
J. Exp. Biol
97
,
401
–.
Huey
R. B.
,
Hertz
P. E.
(
1984
).
Effects of body size and slope on acceleration of a lizard (Stelliostellio)
.
J. Exp. Biol
110
,
113
–.
Irschick
D. J.
,
Austin
C. C.
,
Petren
K.
,
Fisher
R. N.
,
Losos
J. B.
,
Ellers
O.
(
1996
).
A comparative analysis of clinging ability among pad-bearing lizards
.
Biol. J. Linn. Soc
59
,
21
–.
Irschick
D. J.
,
Jayne
B. C.
(
1998
).
Effects of incline on speed, acceleration, body posture and hindlimb kinematics in two species of lizard, Callisaurus draconoides and Uma scoparia
.
J. Exp. Biol
201
,
609
–.
Jayne
B. C.
,
Ellis
R. V.
(
1998
).
How inclines affect the escape behaviour of a dune dwelling lizard, Umascoparia
.
Anim. Behav
55
,
1115
–.
Losos
J. B.
(
1990
).
The evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards
.
Evolution
44
,
1189
–.
Margaria
R.
,
Cerretelli
P.
,
Aghemo
P.
,
Sassi
G.
(
1963
).
Energy cost of running
.
J. Appl. Physiol
18
,
367
–.
Marsh
R. L.
,
Bennett
A. F.
(
1986
).
Thermal dependence of contractile properties of skeletal muscle from the lizard Sceloporus occidentalis with comments on methods for fitting and comparing force—velocity curves
.
J. Exp. Biol.
126
,
63
McMahon
T. A.
,
Valiant
G.
,
Frederick
E. C.
(
1987
).
Groucho running.
J. Appl. Physiol
62
,
2326
2013
.
Peters
S. E.
,
Goslow
G. E. J.
(
1983
).
From salamanders to mammals: continuity in musculoskeletal function during locomotion
.
Brain Behav. Evol
22
,
191
–.
Reilly
S. M.
,
Delancey
M. J.
(
1997
).
Sprawling locomotion in the lizard Sceloporusclarkii: quantitative kinematics of a walking trot
.
J. Exp. Biol
200
,
753
–.
Ritter
D.
(
1992
).
Lateral bending during lizard locomotion
.
J. Exp. Biol
173
,
1
–.
Roberts
T. J.
,
Marsh
R. L.
,
Weyland
P. G.
,
Taylor
C. R.
(
1997
).
Muscular force in running turkeys: the economy of minimizing work
.
Science
275
,
1113
–.
Sloniger
M. A.
,
Cureton
K. J.
,
Prior
B. M.
,
Evans
E. M.
(
1997
).
Lower extremity muscle activation during horizontal and uphill running
.
J. Appl. Physiol
83
,
2073
–.
Smith
J. L.
,
Carlson-Kuhta
P.
(
1995
).
Unexpected motor patterns for hindlimb muscles during slope walking in the cat
.
J. Neurophysiol
74
,
2211
–.
Snyder
R. C.
(
1954
).
The anatomy and function of the pelvic girdle and hindlimb in lizard locomotion
.
Am. J. Anat
95
,
1
–.
Taylor
C. R.
,
Caldwell
S. L.
,
Rowntree
V. J.
(
1972
).
Running up and down hills: some consequences of size
.
Science
178
,
1096
–.
Urban
E. K.
(
1965
).
Quantitative study of locomotion in teiid lizards
.
Anim. Behav
13
,
513
–.
Vilensky
J. A.
,
Moore
A. M.
,
Libii
J. N.
(
1994
).
Squirrel monkey locomotion on an inclined treadmill: Implications for the evolution of gaits
.
J. Human Evol
26
,
375
–.
Williams
E. E.
,
Peterson
J. A.
(
1982
).
Convergent and alternative designs in the digital pads of scincind lizards
.
Science
215
,
1509
–.
This content is only available via PDF.