Quantifying the locomotor forces experienced by swimming fishes represents a significant challenge because direct measurements of force applied to the aquatic medium are not feasible. However, using the technique of digital particle image velocimetry (DPIV), it is possible to quantify the effect of fish fins on water movement and hence to estimate momentum transfer from the animal to the fluid. We used DPIV to visualize water flow in the wake of the pectoral fins of bluegill sunfish (Lepomis macrochirus) swimming at speeds of 0.5-1.5 L s(−)(1), where L is total body length. Velocity fields quantified in three perpendicular planes in the wake of the fins allowed three-dimensional reconstruction of downstream vortex structures. At low swimming speed (0.5 L s(−)(1)), vorticity is shed by each fin during the downstroke and stroke reversal to generate discrete, roughly symmetrical, vortex rings of near-uniform circulation with a central jet of high-velocity flow. At and above the maximum sustainable labriform swimming speed of 1.0 L s(−)(1), additional vorticity appears on the upstroke, indicating the production of linked pairs of rings by each fin. Fluid velocity measured in the vicinity of the fin indicates that substantial spanwise flow during the downstroke may occur as vortex rings are formed. The forces exerted by the fins on the water in three dimensions were calculated from vortex ring orientation and momentum. Mean wake-derived thrust (11.1 mN) and lift (3.2 mN) forces produced by both fins per stride at 0.5 L s(−)(1) were found to match closely empirically determined counter-forces of body drag and weight. Medially directed reaction forces were unexpectedly large, averaging 125 % of the thrust force for each fin. Such large inward forces and a deep body that isolates left- and right-side vortex rings are predicted to aid maneuverability. The observed force balance indicates that DPIV can be used to measure accurately large-scale vorticity in the wake of swimming fishes and is therefore a valuable means of studying unsteady flows produced by animals moving through fluids.

Bennett
L.
(
1977
).
Clap and fling aerodynamics — an experimental evaluation
.
J. Exp. Biol
69
,
261
–.
Blake
R. W.
(
1979
).
The mechanics of labriform locomotion. I. Labriform locomotion in the angelfish (Pterophyllum eimekei): an analysis of the power stroke
.
J. Exp. Biol
82
,
255
–.
Breder
C. M.
Jr.
(
1926
).
The locomotion of fishes
.
Zoologica
4
,
159
–.
Brodsky
A. K.
(
1991
).
Vortex formation in the tethered flight of the peacock butterfly Inachis io L. (Lepidoptera, Nymphalidae) and some aspects of insect flight evolution
.
J. Exp. Biol
161
,
77
–.
Carling
J.
,
Williams
T. L.
,
Bowtell
G.
(
1998
).
Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional Navier—Stokes equations and Newton's laws of motion
.
J. Exp. Biol
201
,
3143
–.
Daniel
T. L.
(
1984
).
Unsteady aspects of aquatic locomotion
.
Am. Zool
24
,
121
–.
Daniel
T. L.
,
Meyhöfer
E.
(
1989
).
Size limits in escape locomotion of carridean shrimp
.
J. Exp. Biol
143
,
245
–.
Dickinson
M. H.
(
1994
).
The effects of wing rotation on unsteady aerodynamic performance at low Reynolds numbers
.
J. Exp. Biol
192
,
179
–.
Dickinson
M. H.
(
1996
).
Unsteady mechanisms of force generation in aquatic and aerial locomotion
.
Am. Zool
36
,
537
–.
Dickinson
M. H.
,
Götz
K. G.
(
1993
).
Unsteady aerodynamicE. G. DRUCKERANDG. V. LAUDER2411 Vortex wake and locomotor force in sunfish performance of model wings at low Reynolds numbers
.
J. Exp. Biol
174
,
45
–.
Dickinson
M. H.
,
Götz
K. G.
(
1996
).
The wake dynamics and flight forces of the fruit fly Drosophila melanogaster
.
J. Exp. Biol
199
,
2085
–.
Drucker
E. G.
,
Jensen
J. S.
(
1996
).
Pectoral fin locomotion in the striped surfperch. I. Kinematic effects of swimming speed and body size
.
J. Exp. Biol
199
,
2235
–.
Drucker
E. G.
,
Jensen
J. S.
(
1997
).
Kinematic and electromyographic analysis of steady pectoral fin swimming in the surfperches
.
J. Exp. Biol
200
,
1709
–.
Ellington
C. P.
(
1984
).
The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms
.
Phil. Trans. R. Soc. Lond. B
305
,
79
–.
Ellington
C. P.
(
1984
).
The aerodynamics of hovering insect flight. V. A vortex theory
.
Phil. Trans. R. Soc. Lond. B
305
,
115
–.
Ellington
C. P.
(
1984
).
The aerodynamics of hovering insect flight. VI. Lift and power requirements
.
Phil. Trans. R. Soc. Lond. B
305
,
145
–.
Ellington
C. P.
,
Van den Berg
C.
,
Willmott
A. P.
,
Thomas
A. L. R.
(
1996
).
Leading-edge vortices in insect flight
.
Nature
384
,
626
–.
Gibb
A. C.
,
Jayne
B. C.
,
Lauder
G. V.
(
1994
).
Kinematics of pectoral fin locomotion in the bluegill sunfish Lepomis macrochirus
.
J. Exp. Biol
189
,
133
–.
Grodnitsky
D. L.
,
Morozov
P. P.
(
1992
).
Flow visualization experiments on tethered flying green lacewings Chrysopa dasyptera
.
J. Exp. Biol
169
,
143
–.
Grodnitsky
D. L.
,
Morozov
P. P.
(
1993
).
Vortex formation during tethered flight of functionally and morphologically two-winged insects, including evolutionary considerations on insect flight
.
J. Exp. Biol
182
,
11
–.
Jayne
B. C.
,
Lauder
G. V.
(
1995
).
Are muscle fibers within fish myotomes activated synchronously? Patterns of recruitment within deep myomeric musculature during swimming in largemouth bass
.
J. Exp. Biol
198
,
805
–.
Kokshaysky
N. V.
(
1979
).
Tracing the wake of a flying bird
.
Nature
279
,
146
–.
Lauder
G. V.
,
Connon
C.
,
Dunn-Rankin
D.
(
1996
).
Visualization of flow behind the tail of swimming fish: new data using DPIV techniques
.
Am. Zool
36
,
7
–.
Lighthill
M. J.
(
1971
).
Large-amplitude elongated-body theory of fish locomotion
.
Proc. R. Soc. Lond. B
179
,
125
–.
Liu
H.
,
Ellington
C. P.
,
Kawachi
K.
,
Van den Berg
C.
,
Willmott
A.
(
1998
).
A computational fluid dynamic study of hawkmoth hovering
.
J. Exp. Biol
201
,
461
–.
Liu
H.
,
Wassersug
R. J.
,
Kawachi
K.
(
1996
).
A computational fluid dynamics study of tadpole swimming
.
J. Exp. Biol
199
,
1245
–.
Liu
H.
,
Wassersug
R. J.
,
Kawachi
K.
(
1997
).
The three-dimensional hydrodynamics of tadpole locomotion
.
J. Exp. Biol
200
,
2807
–.
Muller
U. K.
,
Van den Heuvel
B. L. E.
,
Stamhuis
E. J.
,
Videler
J. J.
(
1997
).
Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso)
.
J. Exp. Biol
200
,
2893
–.
Rayner
J. M. V.
(
1979
).
A new approach to animal flight mechanics
.
J. Exp. Biol
80
,
17
–.
Rayner
J. M. V.
,
Jones
G.
,
Thomas
A.
(
1986
).
Vortex flow visualizations reveal change in upstroke function with flight speed in bats
.
Nature
321
,
162
–.
Spedding
G. R.
(
1986
).
The wake of a jackdaw (Corvus monedula) in slow flight
.
J. Exp. Biol
125
,
287
–.
Spedding
G. R.
(
1987
).
The wake of a kestrel (Falco tinnunculus) in flapping flight
.
J. Exp. Biol
127
,
59
–.
Spedding
G. R.
,
Rayner
J. M. V.
,
Pennycuick
C. J.
(
1984
).
Momentum and energy in the wake of a pigeon (Columba livia) in slow flight
.
J. Exp. Biol
111
,
81
–.
Stamhuis
E. J.
,
Videler
J. J.
(
1995
).
Quantitative flow analysis around aquatic animals using laser sheet particle image velocimetry
.
J. Exp. Biol
198
,
283
–.
Thomson
K. S.
,
Simanek
D. E.
(
1977
).
Body form and locomotion in sharks
.
Am. Zool
17
,
343
–.
Triantafyllou
M. S.
,
Triantafyllou
G. S.
(
1995
).
An efficient swimming machine
.
Scient. Am
272
,
64
–.
Van den Berg
C.
,
Ellington
C. P.
(
1997
).
The vortex wake of a ‘hovering’ model hawkmoth
.
Phil. Trans. R. Soc. Lond. B
352
,
317
–.
Vogel
S.
,
Feder
N.
(
1966
).
Visualization of low-speed flow using suspended plastic particles
.
Nature
209
,
186
–.
Walker
J. A.
,
Westneat
M. W.
(
1997
).
Labriform propulsionin fishes: kinematics of flapping aquatic flight in the bird wrasse Gomphosus varius (Labridae)
.
J. Exp. Biol
200
,
1549
–.
Webb
P. W.
(
1988
).
Simple physical principles and vertebrate aquatic locomotion
.
Am. Zool
28
,
709
–.
Webb
P. W.
(
1993
).
The effect of solid and porous channel walls onsteady swimming of steelhead trout Oncorhynchus mykiss
.
J. Exp. Biol
178
,
97
–.
Webb
P. W.
,
Weihs
D.
(
1994
).
Hydrostatic stability of fish with swim bladders: not all fish are unstable
.
Can. J. Zool
72
,
1149
–.
Weis-Fogh
T.
(
1973
).
Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production
.
J. Exp. Biol
59
,
169
–.
Westneat
M. W.
(
1996
).
Functional morphology of aquatic flight in fishes: kinematics, electromyography, and mechanical modeling of labriform locomotion
.
Am. Zool
36
,
582
–.
This content is only available via PDF.