Animals may adapt to hyperosmolar environments by either osmoregulating or osmoconforming. Osmoconforming animals generally accumulate organic osmolytes including sugars, amino acids or, in a few cases, urea. In the latter case, they also accumulate ‘urea-counteracting’ solutes to mitigate the toxic effects of urea. We examined the osmoregulatory adaptation of Drosophila melanogaster larvae selected to live in 300 mmol l(−)(1) urea. Larvae are strong osmoregulators in environments with high NaCl or sucrose levels, but have increased hemolymph osmolarity on urea food. The increase in osmolarity on urea food is smaller in the selected larvae relative to unselected control larvae, and their respective hemolymph urea concentrations can account for the observed increases in total osmolarity. No other hemolymph components appear to act as urea-counteractants. Urea is calculated to be in equilibrium across body compartments in both selected and control larvae, indicating that the selected larvae are not sequestering it to lower their hemolymph osmolarity. The major physiological adaptation to urea does not appear to involve increased tolerance or improved osmoregulation per se, but rather mechanisms (e.g. metabolism, decreased uptake or increased excretion) that reduce overall urea levels and the consequent toxicity.

REFERENCES

Borash
D. J.
,
Gibbs
A. G.
,
Joshi
A.
,
Mueller
L. D.
(
1998
).
A genetic polymorphism maintained by natural selection in a temporally varying environment
.
Am. Nat
151
,
148
–.
Bradley
T. J.
(
1987
).
Physiology of osmoregulation in mosquitoes
.
Annu. Rev. Ent
32
,
439
–.
Chamberlin
M. E.
,
Strange
K.
(
1989
).
Anisosmotic cell volume regulation: a comparative view
.
Am. J. Physiol
257
,
159
–.
Chambers
S.
,
Kunin
C. M.
(
1985
).
The osmoprotective properties of urine for bacteria: The protective effect of betaine and human urine against low pH and high concentrations of electrolytes, sugars and urea
.
J. Infect. Dis
152
,
1308
–.
Cohen
S. A.
,
Strydom
D. J.
(
1988
).
Amino acid analysis utilizing phenylisothiocyanate derivatives
.
Analyt. Biochem
174
,
1
–.
Garland
T.
,
Carter
P. A.
(
1994
).
Evolutionary physiology
.
Annu. Rev. Physiol
56
,
579
–.
Garrett
M. A.
,
Bradley
T. J.
(
1987
).
Extracellular accumulation of proline, serine and trehalose in the haemolymph of osmoconforming brackish-water mosquitoes
.
J. Exp. Biol
129
,
231
–.
Holliday
C. W.
,
Roye
D. B.
,
Roer
R. D.
(
1990
).
Salinity-induced changes in branchial Na+/K+ATPase activity and transepithelial potential difference in the brine shrimp Artemia salina
.
J. Exp. Biol
151
,
279
–.
Irving
S. N.
,
Osborne
M. P.
,
Wilson
R. G.
(
1976
).
Virtual absence of L-glutamate from the hemoplasm of arthropod blood
.
Nature
263
,
431
–.
Joshi
A.
,
Knight
C. D.
,
Mueller
L. D.
(
1996
).
Genetics of larval urea tolerance in Drosophilamelanogaster
.
Heredity
77
,
33
–.
Kinne
R. K. H.
(
1993
).
The role of organic osmolytes in osmoregulation: from bacteria to mammals
.
J. Exp. Zool
265
,
346
–.
Kirschner
L. B.
(
1993
).
The energetics of osmotic regulation in ureotelic and hypoosmotic fishes
.
J. Exp. Zool
267
,
19
–.
Lien
Y. H.
,
Pacelli
M. M.
,
Braun
E. J.
(
1993
).
Characterization of organic osmolytes in avian renal medulla: a nonurea osmotic gradient system
.
Am. J. Physiol
264
,
1045
–.
Lien
Y. H.
,
Shapiro
J. I.
,
Chan
L.
(
1990
).
Effects of hypernatremia on organic brain osmoles
.
J. Clin. Invest
85
,
1427
–.
Lin
T. Y.
,
Timasheff
S. N.
(
1994
).
Why do some organisms use a urea_methylamine mixture as an osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein
.
Biochemistry
33
,
12695
–.
Mondzac
A.
,
Ehrlich
G. E.
,
Seegmiller
J. E.
(
1965
).
An enzymatic determination of ammonia in biological fluids
.
J. Lab. Clin. Med
66
,
526
–.
Nicolson
S. W.
(
1994
).
Eucalyptus nectar: production, availability, composition and osmotic consequences for the larva of the eucalypt nectar fly, Drosophilaflavohirta
.
S. Afr. J. Sci
90
,
75
–.
Nicolson
S. W.
(
1998
).
The importance of osmosis in nectar secretion and its consumption by insects
.
Am. Zool
38
,
418
–.
Okazaki
T.
,
Ishikawa
T.
,
Nishimori
S.
,
Igarashi
T.
,
Hata
K.
,
Fujita
T.
(
1997
).
Hyperosmolarity-induced gene stimulation is mediated by the negative calcium responsive element
.
J. Biol. Chem
272
,
32274
–.
Parrou
J. L.
,
Francois
J.
(
1997
).
A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells
.
Analyt. Biochem
248
,
186
–.
Rose
M. R.
(
1984
).
Laboratory evolution of postponed senescence in Drosophilamelanogaster
.
Evolution
38
,
1004
–.
Shiotsugu
J.
,
Leroi
A. M.
,
Yashiro
H.
,
Rose
M. R.
,
Mueller
L. D.
(
1997
).
The symmetry of correlated selection responses in adaptive evolution: an experimental study using Drosophila
.
Evolution
51
,
163
–.
Smith
H. W.
(
1936
).
The retention and physiological role of urea in Elasmobranchii
.
Biol. Rev
11
,
49
–.
Van der Meer
J. M.
,
Jaffe
L. F.
(
1983
).
Elemental composition of the perivitelline fluid in early Drosophila embryos
.
Dev. Biol
95
,
249
–.
Wright
D. A.
,
Purcell
J. E.
(
1997
).
Effect of salinity on ionic shifts in mesohaline scyphomedusae, Chrysaoraquinquecirrha
.
Biol. Bull
192
,
332
–.
Yancey
P. H.
,
Clark
M. E.
,
Hand
S. C.
,
Bowlus
R. D.
,
Somero
G. N.
(
1982
).
Living with water stress: evolution of osmolyte systems
.
Science
217
,
1214
–.
This content is only available via PDF.