Vestimentiferan tubeworms have no mouth or gut, and the majority of their nutritional requirements are provided by endosymbiotic bacteria that utilize hydrogen sulfide oxidation to fix CO(2) into organic molecules. It has been assumed that all vestimentiferans obtain the sulfide, O(2) and CO(2) needed by the bacteria across the plume (gill) surface, but some live in locations where very little sulfide is available in the sea water surrounding the plume. We propose that at least some of these vestimentiferans can grow a posterior extension of their body and tube down into the sea-floor sediment, and that they can use this extension, which we call the ‘root’, to take up sulfide directly from the interstitial water. In this study of the vestimentiferan Lamellibrachia sp., found at hydrocarbon seeps in the Gulf of Mexico at depths of approximately 700 m, we measured seawater and interstitial sulfide concentrations in the hydrocarbon seep habitat, determined the structural characteristics of the root tube using transmission electron microscopy, characterized the biochemical composition of the tube wall, and measured the sulfide permeability of the root tube. We found that, while the sulfide concentration is less than 1 (μ)mol l(−)(1) in the sea water surrounding the gills, it can be over 1.5 mmol l(−)(1) at a depth of 10–25 cm in sediment beneath tubeworm bushes. The root tube is composed primarily of giant (β)-chitin crystallites (12–30 % of total mass) embedded in a protein matrix (50 % of total mass). Root tubes have a mean diameter of 1.4 mm, a mean wall thickness of 70 (μ)m and can be over 20 cm long. The tubeworm itself typically extends its body to the distal tip of the root tube. The root tube wall was quite permeable to sulfide, having a permeability coefficient at 20 degrees C of 0. 41×10(−)(3)cm s(−)(1), with root tube being 2.5 times more permeable to sulfide than trunk tube of the same diameter. The characteristics of the root suggest that it reaches down to the higher sulfide levels present in the deeper sediment and that it functions to increase the surface area available for sulfide uptake in a manner analogous to a respiratory organ.

REFERENCES

Arp
A. J.
,
Childress
J. J.
,
Vetter
R. D.
(
1987
).
The sulphide-binding protein in the blood of the vestimentiferan tube-worm, Riftia pachyptila, is the extracellular haemoglobin
.
J. Exp. Biol
128
,
139
–.
Arp
A. J.
,
Menon
J. G.
,
Julian
D.
(
1995
).
Multiple mechanisms provide tolerance to environmental sulfide in Urechis caupo
.
Am. Zool
35
,
132
–.
Bouligand
Y.
(
1971
).
Les orientations fibrillaires dans le squelettes des Arthropodes
.
J. Microsc
11
,
441
–.
Brooks
J.
,
Kennicutt
M.
,
Fisher
C.
,
Macko
S.
,
Cole
K.
,
Childress
J.
,
Bidigare
R.
,
Vetter
R.
(
1987
).
Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources
.
Science
238
,
1138
–.
Childress
J. J.
,
Fisher
C. R.
,
Favuzzi
J. A.
,
Kochevar
R. E.
,
Sanders
N. K.
,
Alayse
A. M.
(
1991
).
Sulfide-driven autotrophic balance in the bacterial symbiont-containing hydrothermal vent tubeworm, Riftia pachyptila Jones
.
Biol. Bull
180
,
135
–.
Edmond
J.
,
Von Damm
K.
(
1983
).
Hot springs on the ocean floor
.
Scient. Am
248
,
78
–.
Gaill
F.
,
Persson
J.
,
Sugiyama
J.
,
Vuong
R.
,
Chanzy
H.
(
1992
).
The chitin system in the tubes of deep-sea hydrothermal vent worms
.
J. Struct. Biol
109
,
116
–.
Gaill
F.
,
Shillito
B.
,
Lechaire
J. P.
,
Chanzy
H.
,
Goffinet
G.
(
1992
).
The chitin secreting system from deep sea hydrothermal vent worms
.
Biol. Cell
76
,
201
–.
Goffredi
S. K.
,
Childress
J. J.
,
Desaulniers
N. T.
,
Lallier
F. H.
(
1997
).
Sulfide acquisition by the vent worm Riftia pachyptila appears to be via uptake of HS, rather than H2S
.
J. Exp. Biol
200
,
2609
–.
Goffredi
S. K.
,
Childress
J. J.
,
Desaulniers
N. T.
,
Lee
R. W.
,
Lallier
F. H.
,
Hammond
D.
(
1997
).
Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends on high external P COand upon proton-equivalent ion transport by the worm
.
J. Exp. Biol
200
,
883
–.
Hekinian
R.
(
1985
).
Undersea volcanoes
.
Scient. Am
251
,
46
–.
Jones
M. L.
(
1981
).
Riftia pachyptila, new genus, new species, the vestimentiferan tubeworm from the Galapagos Rift geothermal vents
.
Proc. Biol. Soc. Washington
93
,
1295
–.
Lowry
O. H.
,
Rosebrough
N. J.
,
Farr
A. L.
,
Randall
R. J.
(
1951
).
Protein measurement with the folin phenol reagent
.
J. Biol. Chem
193
,
265
–.
Schacterle
G. R.
,
Pollack
R. L.
(
1973
).
A simplified method for the quantitative assay of small amounts of protein in biologic material
.
Analyt. Biochem
51
,
654
–.
Shillito
B.
,
Lubbering
B.
,
Lechaire
J. P.
,
Childress
J. J.
,
Gaill
F.
(
1995
).
Chitin localization in the tube secretion systemof a repressurized deep-sea tube worm
.
J. Struct. Biol
114
,
67
–.
This content is only available via PDF.