Muscle development and growth were investigated in diploid populations of normal-sex-ratio and all-female Atlantic salmon (Salmo salar L.) and their triploid counterparts produced by high-pressure treatment. Somites were formed at the rate of 6 h-1 in both diploids and triploids at 6 degrees C. The rostral-to-caudal development of myotubes, myofibrils and acetylcholinesterase staining at the myosepta was slightly more advanced in triploid than in diploid fish, although the differences were smaller than among individual families. The c-met receptor tyrosine kinase was used as a molecular marker for the satellite cells involved in postembryonic muscle growth. Satellite cell nuclei comprised 17.5 % of total myonuclei in smolts and they were 24 % more abundant in diploid than in triploid fish. Cells expressing the myogenic regulatory factor myf-6, a marker of satellite cells committed to differentiation, represented 14.8 % of total myonuclei in diploids and 12.5 % in triploids. At ambient temperatures, the number of white muscle fibres in normal-sex-ratio fish increased more than 30-fold between the alevin and smolt stages, and approximately 3.5-fold further during the first year of seawater growth. The rate of muscle fibre recruitment in seawater stages was significantly greater in diploid than in triploid fish, reaching 1162 fibres day-1 and 608 fibres day-1, respectively, in all-female groups 800 days post-hatching. For 42 cm fork-length fish, there were approximately one-third more muscle fibres per myotome in diploid than in triploid groups, 649 878 and 413 619, respectively, for all-female fish. The probability density function of muscle fibre diameters in each fish was estimated using non-parametric smoothing techniques, and the mean densities for diploids (fD) and triploids (fT) were calculated. The peak fibre diameter was approximately 20 (micro)m in all age classes, irrespective of ploidy. Distinct bimodal distributions of muscle fibre diameter were evident in all groups 775 days and 839 days post-hatching, reflecting seasonal cycles of fibre recruitment. fD and fT were compared using a non-parametric bootstrap technique and the reference band representing the null-hypothesis indicated that there was no difference with ploidy. Reference bands for normal-sex-ratio fish at 315 days and 470 days indicated that diploids had a higher percentage of smaller-diameter fibres and that triploid distributions had a thicker right-hand tail. Similar differences in fD and fT of muscle fibre diameters were found for all-female fish, although the statistical evidence was less strong. Reference bands indicated differences in the middle range of the distributions of muscle fibre diameter in fish 620–775 days post-hatch, with triploids having a thicker right-hand tail. Thus, a lower density of satellite cells was associated with reduced rates of fibre recruitment but a compensatory increase in muscle fibre hypertrophy in triploid compared with diploid fish.

REFERENCES

Blagden
C. S.
,
Currie
P. D.
,
Ingham
P. W.
,
Hughes
S. M.
(
1997
).
Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog
.
GenesDev
11
,
2163
–.
Brown
N. C.
,
Stickland
N. C.
(
1993
).
Satellite cell content in muscles of large and small mice
.
J. Anat
183
,
91
–.
Carpene
E.
,
Veggetti
A.
(
1981
).
Increase in muscle fibres in the lateralis muscle (white portion) of Mugilidae (Pisces, Teleostei)
.
Experientia
37
,
191
–.
Carter
C. G.
,
McCarthy
I. D.
,
Houlihan
D. F.
,
Johnstone
R.
,
Walsingham
M. V.
,
Mitchell
A. I.
(
1994
).
Food consumption, feeding behaviour and growth of triploid and diploid Altantic salmon, Salmo salar L
.
parr. Can. J. Zool
72
,
609
–.
Cornelison
D. D. W.
,
Wold
B. J.
(
1997
).
Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells
.
Dev. Biol
191
,
270
–.
Davison
A. C.
,
Hinkley
D. V.
(
1997
).
Bootstrap Methods and their Applications.
Cambridge
:
Cambridge University Press
.
Devoto
S. H.
,
Melancon
E.
,
Eisen
J. S.
,
Westerfield
M.
(
1996
).
Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation.
Development
122
,
3371
3380
.
Dominov
J. A.
,
Dunn
J. J.
,
Miller
J. B.
(
1998
).
Bcl-2 expression identifies an early stage of myogenesis and promotes clonal expansion of muscle cells
.
J. Cell Biol
142
,
537
–.
Gibson
M. C.
,
Schultz
E.
(
1983
).
Age-related differences in absolute numbers of skeletal muscle satellite cells
.
Muscle & Nerve
6
,
574
–.
Gonzatti-Haces
M.
,
Seth
A.
,
Park
M.
,
Copeland
T.
,
Oroszlan
S.
,
Vande woude
G. F.
(
1988
).
Characterisation of the trp-met oncogene p65 and the met proto-ongogene cell surface p140 tyrosine kinases
.
Proc. Natl. Acad. Sci. USA
85
,
21
–.
Grounds
M. D.
,
Garrett
K. L.
,
Lai
M. C.
,
Wright
W. E.
,
Beilharz
M. W.
(
1992
).
Identification of skeletal muscle precursor cells in vivo by use of MyoD and myogenin probes
.
Cell Tissue Res
267
,
99
–.
Johnson
K. R.
,
Wright
J. E.
Jr.
,
May
B.
(
1987
).
Linkage relationships reflecting ancestral tetraploidy in salmonid fish
.
Genetics
116
,
579
–.
Johnston
I. A.
,
Cole
N. J.
,
Abercromby
M.
,
Vieira
V. L. A.
(
1998
).
Embryonic temperature modulates muscle growth characteristics in larval and juvenile herring
.
J. Exp. Biol
201
,
623
–.
Johnston
I. A.
,
McLay
H. A.
(
1997
).
Temperature and family effects on muscle cellularity at hatch and first feeding in Atlantic salmon (Salmo salar L.)
.
Can. J. Zool
75
,
64
–.
Johnston
I. A.
,
Vieira
V. L. A.
,
Abercromby
M.
(
1995
).
Temperature and myogenesis in embryos of Atlantic herring Clupea harengus
.
J. Exp. Biol
198
,
1389
–.
Johnstone
R.
,
Stet
R. J. M.
(
1995
).
The production of gynogenetic Atlantic salmon, Salmo salar L
.
Theor. Appl. Genet
90
,
819
–.
Kimmel
C. B.
,
Schilling
T. F.
,
Hatta
K.
(
1991
).
Patterning of body segments of the zebrafish embryo
.
Curr. Topics Dev. Biol
25
,
77
–.
Koumans
J. T. M.
,
Akster
H. A.
,
Booms
G. H. R.
,
Lemmens
C. J. J.
,
Osse
J. W. M.
(
1991
).
Numbers of myosatellite cells in white axial muscle of growing fish: Cyprinus carpio L. (Teleostei)
.
Am. J. Anat
192
,
418
–.
Leary
R. F.
,
Allendorf
F. W.
,
Knudsen
K. L.
,
Thorgaard
G. H.
(
1985
).
Heterozygosity and developmental stability in gynogenetic diploid and triploid rainbow trout
.
Heredity
54
,
219
–.
Matsumoto
K.
,
Nakamura
T.
(
1996
).
Emerging multipotent aspects of hepatocyte growth factor
.
J. Biochem
119
,
591
–.
Nag
A. C.
,
Nursall
J. R.
(
1972
).
Histogenesis of white and red muscle fibres of trunk muscles of a fish Salmo gairdneri
.
Cytobios
6
,
227
–.
Olson
E. N.
,
Klein
W. H.
(
1994
).
bHLH factors in muscle development: Dead lines and commitments, what to leave in and what to leave out
.
Genes Dev
8
,
1
–.
Rowe
R. W. E.
,
Goldspink
G.
(
1969
).
Muscle fibre growth in five different muscles in both sexes of mice. I. Normal mice
.
J. Anat
132
,
557
–.
Rowlerson
A.
,
Mascarello
F.
,
Radaelli
G.
,
Veggetti
A.
(
1995
).
Differentiation and growth of muscle in the fish Sparus aurata (L.). II. Hyperplastic and hypertrophic growth of lateral muscle from hatching to adult
.
J. Muscle Res. Cell Motil
16
,
223
–.
Small
S. A.
,
Benfey
T. J.
(
1987
).
Cell size in triploid salmon
.
J. Exp. Zool
241
,
339
–.
Smith
C. K.
,
Janney
M. J.
,
Allen
R. E.
(
1994
).
Temporal expression of myogenic regulatory genes during activation, proliferation and differentiation of rat skeletal muscle satellite cells
.
J. Cell Physiol
159
,
379
–.
Stickland
N. C.
(
1983
).
Growth and development of muscle fibres in the rainbow trout (Salmo gairdneri)
.
J. Anat
137
,
323
–.
Stockdale
F. E.
(
1992
).
Myogenic cell lineages
.
Dev. Biol
154
,
284
–.
Stoiber
W.
,
Sänger
A. M.
(
1996
).
An electron microscopic investigation into the possible source of new muscle fibres in teleost fish
.
Anat. Embryol
194
,
569
–.
Tatsumi
R.
,
Anderson
J. E.
,
Nevoret
C. J.
,
Halevy
O.
,
Allen
R. E.
(
1998
).
HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells
.
Dev. Biol
194
,
114
–.
Thorgaard
G. H.
,
Gall
G. A. E.
(
1979
).
Adult triploids in a rainbow trout family
.
Genetics
93
,
961
–.
Van Raamsdonk
W.
,
Van der Stelt
A.
,
Diegenbach
P. C.
,
Van den Berg
W.
,
De Beryn
H.
,
Van Dijk
J.
,
Mijzen
P.
(
1974
).
Differentiation of the musculature of the teleost Brachydanio rerio
.
Anat. Embryol
153
,
137
–.
Veggetti
A.
,
Mascerello
F.
,
Scapolo
P.-A.
,
Rowlerson
A.
(
1990
).
Hyperplastic and hypertrophic growth of lateral muscle in Dicentrarchus labrax (L.)
.
Anat.Embryol
182
,
1
–.
Walsh
K.
,
Perlman
H.
(
1997
).
Cell cycle exit upon myogenic differentiation
.
Curr. Opin. Genet. Dev
7
,
597
–.
Waterman
R. E.
(
1969
).
Development of the lateral musculature in the teleost Brachydaniorerio: A fine structural study
.
Am. J. Anat
125
,
457
–.
Weatherley
A. H.
,
Gill
H. S.
(
1985
).
Dynamics of increase inmuscle fibers in fishes in relation to size and growth
.
Experientia
41
,
353
–.
Weatherley
A. H.
,
Gill
H. S.
,
Rogers
S. C.
(
1979
).
Growth dynamics of muscle fibers, dry weight and condition in relation to somatic growth in yearling rainbow trout (Salmo gairdneri)
.
Can. J. Zool
57
,
2385
–.
Weinberg
E. S.
,
Allende
M. L.
,
Kelly
C. S.
,
Abdelhamid
A.
,
Murakami
T.
,
Anderman
P.
,
Doerre
O. G.
,
Gunwald
D. J.
,
Riggleman
B.
(
1996
).
Developmental regulation of zebrafish MyoD in normal sex ratio, no tail and spadetail embryos
.
Development
122
,
271
–.
Wilson
S. J.
,
Mcewan
J. C.
,
Sheard
P. W.
,
Harris
A. J.
(
1992
).
Early stages of myogenesis in a large mammal: formation of successive generations of myotubes in sheep tibialis cranialis muscle
.
J. Muscle Res. Cell Motil
13
,
534
–.
Yablonka-Reuveni
Z.
,
Rivera
A. J.
(
1994
).
Temporal expression of regulatory and structural proteins during myogenesis of satellite cells on isolated rat fibers
.
Dev. Biol
164
,
588
–.
Yun
K.
,
Wold
B.
(
1996
).
Skeletal muscle determination and differentiation: Story of a core regulatory network and its context
.
Curr. Opin. Cell Biol
8
,
877
–.
This content is only available via PDF.