Fast-start locomotor behavior is important for escaping from predators and for capturing prey. To examine the effects of size and other aspects of developmental morphology on fast-start performance, the kinematics of the fast-start escape behavior were studied through early post-hatching development in three salmonid species: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch) and brown trout (Salmo trutta). These three species, while morphologically and developmentally similar, hatch and mature at different sizes (total length). Comparison of these species shows that some fast-start performance variables, including stage duration, maximum velocity and maximum acceleration, are highly dependent on ontogenetic state, while another, the overall distance traveled during stage 2, scales with total body length. Brown trout were studied from hatching into the juvenile development period. Aspects of fast-start performance peak at the end of yolk-sac absorption (the end of the eleutheroembryo phase) when the fish reaches the juvenile period. At this time, the durations of the fast-start stages are at their minima, and maximum velocity and maximum acceleration are at their highest levels relative to body length. Thus, escape behavior reaches its maximum size-specific performance at a relatively small size, just as the fish absorbs its yolk sac and begins to search for food. This peak in fast-start performance occurs during a life history period in which fast-start ability is likely to be particularly important for survival.

REFERENCES

Batty
R. S.
(
1984
).
Development of swimming movements and musculature in the larval herring (Clupea harengus)
.
J. Exp. Biol
110
,
217
–.
Bernardo
J.
(
1994
).
Experimental analysis of allocation in two divergent, natural salamander populations
.
Am. Nat
143
,
14
–.
Domenici
P.
,
Blake
R. W.
(
1991
).
The kinematics and performance of the escape response in the angelfish (Pterophyllum eimekei)
.
J. Exp. Biol
156
,
187
–.
Domenici
P.
,
Blake
R. W.
(
1993
).
Escape trajectories in angelfish (Pterophyllum eimekei)
.
J. Exp. Biol
177
,
253
–.
Domenici
P.
,
Blake
R. W.
(
1993
).
The effect of size on the kinematic performance of angelfish (Pterophyllum eimekei) escape responses
.
Can. J. Zool
71
,
2319
–.
Domenici
P.
,
Blake
R. W.
(
1997
).
The kinematics and performance of fish fast-start swimming
.
J. Exp. Biol
200
,
1165
–.
Eaton
R. C.
,
Emberley
D. S.
(
1991
).
How stimulus direction determines the trajectory of the Mauthner-initiated escape response in a teleost fish
.
J. Exp. Biol
161
,
469
–.
Eaton
R. C.
,
Farley
R. D.
,
Kimmel
C. B.
,
Schabtach
E.
(
1977
).
Functional development in the Mauthner cell system of embryos and larvae of the zebrafish
.
J. Neurobiol
8
,
151
–.
Fernald
R. D.
(
1975
).
Fast body turns in cichlid fish
.
Nature
258
,
228
–.
Foreman
M. B.
,
Eaton
R. C.
(
1993
).
The direction change concept for reticulospinal control of goldfish escape
.
J. Neurosci
13
,
4101
–.
Fuiman
L. A.
(
1993
).
Development of predator evasion in Atlantic herring, Clupea harengus L
.
Anim. Behav
45
,
1101
–.
Fuiman
L. A.
,
Webb
P. W.
(
1988
).
Ontogeny of routine swimming activity and performance in zebra danios (Teleostei: Cyprinidae)
.
Anim. Behav
36
,
250
–.
Hale
M. E.
(
1996
).
The development of fast-start performance in fishes: escape kinematics of the chinook salmon (Oncorhynchus tshawytscha)
.
Am. Zool
36
,
695
–.
Harper
D. G.
,
Blake
R. W.
(
1989
).
A critical analysis of the use of high-speed film to determine maximum accelerations of fish
.
J. Exp. Biol
142
,
465
–.
Harper
D. G.
,
Blake
R. W.
(
1989
).
On the error involved in high-speed film when used to evaluate maximum accelerations of fish
.
Can. J. Zool
67
,
1929
–.
Jayne
B. C.
,
Lauder
G. V.
(
1996
).
New data on axial locomotion in fishes: How speed affects diversity of kinematics and motor patterns
.
Am. Zool
36
,
642
–.
Kasapi
M. A.
,
Domenici
P.
,
Blake
R. W.
,
Harper
D.
(
1993
).
The kinematics and performance of escape responses of the knifefish Xenomystus nigri
.
Can. J. Zool
71
,
189
–.
McArdle
B. H.
(
1988
).
The structural relationship: regression in biology
.
Can. J. Zool
66
,
2329
–.
Nag
A. C.
,
Nursall
J. R.
(
1972
).
Histogenesis of white and red muscle fibres of trunk muscle of a fish, Salmo gairdneri
.
Cytobios
6
,
227
–.
Reznick
D.
,
Endler
J. A.
(
1982
).
The impact of predation on life history evolution in Trinidadian guppies (Poecilia reticulata)
.
Evolution
36
,
160
–.
Rice
W. R.
(
1989
).
Analyzing tables of statistical tests
.
Evolution
43
,
223
–.
van Raamsdonk
W.
,
van't Veer
L.
,
Veeken
K.
,
Heyting
C.
,
Pool
C. W.
(
1982
).
Differentiation of muscle fiber types in the teleost Brachydanio rerio, the zebrafish
.
Anat. Embryol
164
,
51
–.
Walker
J. A.
(
1998
).
Estimating velocities and accelerations of animal locomotion: a simulation experiment comparing numerical differentiation methods
.
J. Exp. Biol
201
,
981
–.
Wardle
C. S.
(
1975
).
Limit of fish swimming speed
.
Nature
255
,
725
–.
Webb
P. W.
(
1976
).
The effect of size on the fast-start performance of rainbow trout Salmo gairdneri and a consideration of piscivorous predator—prey interactions
.
J. Exp. Biol
65
,
157
–.
Webb
P. W.
(
1978
).
Fast-start performance and body form in seven species of teleost fish
.
J. Exp. Biol
74
,
211
–.
Weihs
D.
(
1973
).
The mechanism of rapid starting of slender fish
.
Biorheology
10
,
343
–.
Westneat
M. W.
,
Hale
M. E.
,
McHenry
M. J.
,
Long
J. H.
Jr.
(
1998
).
Mechanics of the fast-start: muscle function and the role of intermuscular pressure in the escape behavior of Amia calva and Polypterus palmas
.
J. Exp. Biol
201
,
3041
–.
This content is only available via PDF.