In mormyrid electric fish, sensory signals from electroreceptors are relayed to secondary sensory neurons in a cerebellum-like structure known as the electrosensory lateral line lobe (ELL). Efferent neurons and interneurons of the ELL also receive inputs of central origin, including electric organ corollary discharge signals, via parallel fibers and via fibers from the juxtalobar nucleus. To understand the cellular mechanisms of the integration of sensory inputs and central inputs in the ELL, the intracellular activity and ionic properties of the efferent projection neurons and interneurons were examined in an in vitro slice preparation.We focus here on the electrophysiological properties of the efferent neurons of the ELL network, the large fusiform cells and large ganglion cells, and on a class of gamma-aminobutyric acid (GABA)-ergic interneurons known as medium ganglion (MG) cells. In response to current injection through a recording pipette, both types of efferent neuron fire a large narrow spike followed by a large hyperpolarizing afterpotential. The MG cells fire a complex spike which consists of small narrow spikes and a large broad spike. Although the forms of the action potentials in efferent neurons and in MG cells are different, all spikes are mediated by tetrodotoxin (TTX)-sensitive Na+ conductances and spike repolarization is mediated by tetraethylammonium (TEA+)-sensitive K+ conductances. In the presence of TEA+, substitution of Ba2+ for Ca2+ in the bath revealed the presence of a high-voltage-activated Ca2+ conductance.Stimulation of parallel fibers conveying descending input to the ELL molecular layer in vitro evokes an excitatory postsynaptic potential (EPSP), generally followed by an inhibitory postsynaptic potential (IPSP), in the efferent neurons. In MG cells, the same stimulation evokes an EPSP, often followed by a small IPSP. Synaptic transmission at parallel fiber synapses is glutamatergic and is mediated via both N-methyl-d-aspartate (NMDA)- and (AMPA)-type glutamate receptors. The inhibitory component of the parallel fiber response is GABAergic. It is probably mediated via the stellate neurons and the MG cells, which are themselves GABAergic interneurons intrinsic to the ELL network.A hypothetical neural circuit of the intrinsic connections of the ELL, based on the known morphology of projection neurons and medium ganglion interneurons, is presented. This circuit includes an excitatory and an inhibitory submodule. The excitatory submodule is centered on a large fusiform cell and appears to relay the sensory input as a positive ‘ON’ image of an object. The inhibitory submodule is centered on a large ganglion cell and relays a negative ‘OFF’ image to the next higher level. We suggest that MG cells exert an inhibitory bias on efferent neuron types and that the ELL network output is modulated by the dynamically plastic integration of central descending signals with sensory input.

REFERENCES

Bell
C. C.
(
1982
).
Properties of a modifiable efference copy in an electric fish
.
J. Neurophysiol.
47
,
1043
1056
.
Bell
C. C.
(
1990
).
Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibers.
J. Neurophysiol
63
,
319
332
.
Bell
C. C.
,
Caputi
A.
,
Grant
K.
(
1997
).
Physiology and plasticity of morphologically identified cells in the mormyrid electrosensory lobe
.
J. Neurosci
17
,
6409
–.
Bell
C. C.
,
Caputi
A.
,
Grant
K.
,
Serrier
J.
(
1993
).
Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish
.
Proc. Natl. Acad. Sci. USA
90
,
4650
–.
Bell
C. C.
,
Finger
T. E.
,
Russell
C. J.
(
1981
).
Central connections of the posterior lateral line lobe in mormyrid fish
.
Exp. Brain Res
42
,
9
–.
Bell
C. C.
,
Grant
K.
(
1989
).
Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish
.
J. Neurosci
9
,
1029
–.
Bell
C. C.
,
Grant
K.
(
1992
).
Sensory processing and corollary discharge effects in mormyromast regions of mormyrid electrosensory lobe. II. Cell types and corollary discharge plasticity
.
J. Neurophysiol
68
,
859
–.
Bell
C. C.
,
Grant
K.
,
Serrier
J.
(
1992
).
Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe. I. Field potentials, cellular activity in associated structures
.
J. Neurophysiol
68
,
843
–.
Bell
C. C.
,
Han
V. Z.
,
Sugawara
Y.
,
Grant
K.
(
1997
).
Synaptic plasticity in a cerebellum-like structure depends on temporal order
.
Nature
387
,
278
–.
Bell
C. C.
,
Libouban
S.
,
Szabo
T.
(
1983
).
Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish
.
J. Comp. Neurol
216
,
327
–.
Bell
C.
,
Russell
C. J.
(
1978
).
Termination of electroreceptor and mechanical lateral line afferents in the mormyrid acousticolateral area
.
J. Comp. Neurol
182
,
367
–.
Bell
C. C.
,
Russell
C. J.
(
1978
).
Effect of electric organ discharge on ampullary receptors in a mormyrid
.
Brain Res
145
,
85
–.
Bell
C. C.
,
Zakon
H.
,
Finger
T. E.
(
1989
).
Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. I. Morphology
.
J. Comp. Neurol
286
,
391
–.
Grant
K.
,
Meek
J.
,
Sugawara
Y.
,
Veron
M.
,
Denizot
J. P.
,
Hafmans
T. G. M.
,
Serrier
J.
,
Szabo
T.
(
1996
).
Projection neurons of the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry and synaptology
.
J. Comp. Neurol
375
,
18
–.
Grant
K.
,
Sugawara
Y.
,
Gomez
L.
,
Han
V.
,
Bell
C. C.
(
1998
).
The mormyrid electrosensory lobe in vitro: Physiology and pharmacology of cells and circuits
.
J. Neurosci
18
,
6009
–.
Hagiwara
S.
,
Barley
L.
(
1981
).
Calcium channel
.
Annu. Rev. Neurosci
4
,
69
–.
Han
V.
,
Bell
C. C.
,
Grant
K.
,
Sugawara
Y.
(
1999
).
The mormyrid electrosensory lobe in vitro. I. Morphology of cells and circuits
.
J. Comp. Neurol
404
,
359
–.
Jaffe
D. B.
,
Johnston
D.
,
Lasser-Ross
N.
,
Lisman
J. E.
,
Miyakawa
H.
,
Ross
W. N.
(
1992
).
The spread of Na+spikes determines the pattern of dendritic Ca2+entry into hippocampal neurons
.
Nature
357
,
244
–.
Maler
L.
(
1973
).
The posterior lateral line lobe of a mormyrid fish — A Golgi study
.
J. Comp. Neurol
152
,
281
–.
Maler
L.
,
Sas
E.
,
Carr
C. E.
,
Matsubara
J.
(
1982
).
Efferent projections of the posterior lateral line lobe in gymnotiform fish
.
J. Comp. Neurol
211
,
154
–.
Meek
J.
,
Grant
K.
,
Sugawara
Y.
,
Hafmans
T. G. M.
,
Veron
M.
,
Denizot
J. P.
(
1996
).
Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry and synaptology
.
J. Comp. Neurol
375
,
43
–.
Regehr
W.
,
Kehoe
J.
,
Ascger
P.
,
Armstrong
C.
(
1993
).
Synaptically triggered action potentials in dendrites
.
Neuron
11
,
145
–.
Russell
C. J.
,
Bell
C. C.
(
1978
).
Neural responses to electrosensory input in mormyrid valvula cerebelli
.
J. Neurophysiol
41
,
1495
–.
Stuart
G. J.
,
Sakmann
B.
(
1994
).
Active propagation of somatic action potentials into neocortical pyramidal cell dendrites
.
Nature
367
,
69
–.
Szabo
T.
,
Enger
P. S.
,
Libouban
S.
(
1979
).
Electrosensory systems in the mormyrid fish, Gnathonemus petersii: special emphasis on the fast conducting pathway
.
J. Physiol., Paris
75
,
409
–.
Szabo
T.
,
Hagiwara
S.
(
1967
).
A latency-change mechanism involved in sensory coding of electric fish (mormyrids)
.
Physiol. Behav
2
,
331
–.
Turner
R. W.
,
Maler
L.
,
Deerinck
T.
,
Levinson
R.
,
Ellisman
M. H.
(
1994
).
TTX-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron
.
J. Neurosci
14
,
6453
–.
Turner
W. R.
,
Meyers
D. E. R.
,
Richardson
T. L.
,
Barker
J. L.
(
1991
).
The site for initiation of action potential discharge over the somato dendritic axis of rat hippocampal CA1 pyramidal neurons
.
J. Neurosci
11
,
2270
–.
von Holst
E.
,
Mittelstaedt
H.
(
1950
).
Das Reafferenzprinzip
.
Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften
37
,
464
–.
Zipser
B.
,
Bennett
M. V. L.
(
1976
).
Interaction of electrosensory and electromotor signals in lateral line lobe of a mormyrid fish
.
J. Neurophysiol
39
,
713
–.
This content is only available via PDF.