The electrosensory lateral line lobe (ELL) of mormyrid teleosts is the first central stage in electrosensory input processing. It is a well-developed structure with six main layers, located in the roof of the rhombencephalon. Its main layers are, from superficial to deep, the molecular, ganglionic, plexiform, granular, intermediate and deep fiber layers. An important input arises from electroreceptors, but corollary electromotor command signals and proprioceptive, mechanosensory lateral line and descending electrosensory feedback inputs reach the ELL as well. The ELL input is processed by at least 14 cell types, which frequently show plastic responses to different inputs. The large ganglionic and large fusiform cells are the ELL projection cells. They are glutamatergic and project to the isthmic preeminential nucleus and the midbrain lateral toral nucleus. Interneurons are located in all ELL layers and are mostly GABAergic. The most remarkable interneurons are large multipolar cells in the intermediate layer, which have myelinated dendrites making presynaptic terminals contacting granular cells. With respect to the synaptic organization and microcircuitry of the ELL, a number of qualitative and quantitative aspects have been elucidated using electron microscopical and intracellular labeling techniques. However, the pathways by which primary afferent input influences the ELL projection cells are still undetermined: primary afferents do not seem to contact large fusiform or large ganglionic cells directly, but seem to terminate exclusively on granular cells, the axonal properties of which are not known. Consequently, more information of the structural organization of the ELL is still necessary for a detailed understanding of the neural basis of the plastic electrosensory input processing in mormyrids.

Bell
C. C.
(
1981
).
Central distribution of octavolateral afferents and efferents in a teleost (Mormyridae)
.
J. Comp. Neurol
195
,
391
–.
Bell
C. C.
(
1989
).
Sensory coding and corollary discharge effects in mormyrid electric fish
.
J. Exp. Biol
146
,
229
–.
Bell
C. C.
(
1990
).
Mormyromast electroreceptor organs and theirafferent fibers in mormyrid fish. II. Intra-axonal recordings show initial stages of central processing
.
J. Neurophysiol
63
,
303
–.
Bell
C. C.
(
1990
).
Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibres
.
J. Neurophysiol
63
,
319
–.
Bell
C. C.
,
Bodznick
D.
,
Montgomery
J.
,
Bastian
J.
(
1997
).
The generation and subtraction of sensory expectations within cerebellum-like structures
.
Brain Behav. Evol
50
,
17
–.
Bell
C. C.
,
Caputi
A.
,
Grant
K.
(
1997
).
Physiology and plasticity of morphologically identified cells in the electrosensory lobe
.
J. Neurosci
17
,
6409
–.
Bell
C. C.
,
Caputi
A.
,
Grant
K.
,
Serrier
J.
(
1993
).
Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish
.
Proc. Natl. Acad. Sci. USA
90
,
4650
–.
Bell
C. C.
,
Finger
T. E.
,
Russell
C. J.
(
1981
).
Centralconnections of the posterior lateral line lobe in mormyrid fish
.
Exp. Brain Res
42
,
9
–.
Bell
C. C.
,
Grant
K.
(
1989
).
Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish
.
J. Neurosci
9
,
1029
–.
Bell
C. C.
,
Grant
K.
(
1992
).
Sensory processing and corollary discharge effects in mormyromast regions of mormyrid electrosensory lobe. II. Cell types and corollary discharge plasticity
.
J. Neurophysiol
68
,
859
–.
Bell
C. C.
,
Grant
K.
,
Serrier
J.
(
1992
).
Sensory processing and corollary discharge effects in the mormyromast response of the mormyrid electrosensory lobe. I. Field potentials, cellular activity in associated structures
.
J. Neurophysiol
68
,
843
–.
Bell
C. C.
,
Han
V. Z.
,
Sugawara
S.
,
Grant
K.
(
1997
).
Synaptic plasticity in a cerebellum-like structure depends on temporal order
.
Nature
387
,
278
–.
Bell
C. C.
,
Libouban
S.
,
Szabo
T.
(
1983
).
Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish
.
J. Comp. Neurol
216
,
327
–.
Bell
C. C.
,
Russell
C. J.
(
1978
).
Termination of electroreceptor and mechanical lateral line afferents in the mormyrid acousticolateral area
.
J. Comp. Neurol
182
,
367
–.
Bell
C. C.
,
Zakon
H.
,
Finger
T. E.
(
1989
).
Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. I. Morphology
.
J. Comp. Neurol
286
,
391
–.
Denizot
J. P.
,
Clausse
S.
,
Elekes
K.
,
Geffard
M.
,
Grant
K.
,
Libouban
S.
,
Ravaille-Veron
M.
,
Szabo
T.
(
1987
).
Convergence of electrotonic club endings, GABA-and serotoninergic terminals on second order neurons of the electrosensory pathway in mormyrid fish, Gnathonemus petersii and Brienomyrus niger (Teleostei)
.
Cell Tissue Res
249
,
301
–.
Elekes
K.
,
Ravaille
M.
,
Bell
C. C.
,
Libouban
S.
,
Szabo
T.
(
1985
).
The mormyrid brainstem. II. The medullary electromotor relay nucleus: an ultrastructural horseradish peroxidase study
.
Neurosci
15
,
417
–.
Elekes
K.
,
Szabo
T.
(
1985
).
The mormyrid brainstem. III. Ultrastructure and synaptic organization of the medullary pacemaker nucleus
.
Neurosci
15
,
431
–.
Finger
T. E.
,
Bell
C. C.
,
Russell
C. J.
(
1981
).
Electrosensory pathways to the valvula cerebelli in mormyrid fish
.
Exp. Brain Res
42
,
23
–.
Grant
K.
,
Bell
C. C.
,
Clausse
S.
,
Ravaille
M.
(
1986
).
Morphology and physiology of the brainstem nuclei controlling the electric organ discharge in mormyrid fish
.
J. Comp. Neurol
245
,
514
–.
Grant
K.
,
Clausse
S.
,
Libouban
S.
,
Szabo
T.
(
1989
).
Serotoninergic neurons in the mormyrid brain and their projection to the preelectromotor and primary electrosensory centers: immunohistochemical study
.
J. Comp. Neurol
281
,
114
–.
Grant
K.
,
Meek
J.
,
Sugawara
Y.
,
Veron
M.
,
Denizot
J.
,
Hafmans
T.
,
Serrier
J.
,
Szabo
T.
(
1996
).
Projection neurons of the mormyrid electrosensory lateral line lobe: Morphology, immunohistochemistry and synaptology
.
J. Comp. Neurol
375
,
18
–.
Grant
K.
,
Sugawara
Y.
,
Gomez
L.
,
Han
V.
,
Bell
C. C.
(
1998
).
The mormyrid electrosensory lobe in vitro. II. Physiology and pharmacology of cells and circuits
.
J. Neurosci
18
,
6009
–.
Han
V.
,
Bell
C. C.
,
Grant
K.
,
Sugawara
Y.
(
1999
).
The mormyrid electrosensory lobe in vitro. I. Morphology of cells and circuits
.
J. Comp. Neurol
404
,
359
–.
Maler
L.
(
1973
).
The posterior lateral line lobe of a mormyrid fish. A Golgi study
.
J. Comp. Neurol
152
,
281
–.
Maler
L.
,
Karten
H. J.
,
Bennett
M. V. L.
(
1973
).
The central connections of the posterior lateral line nerve of Gnathonemus petersii
.
J. Comp. Neurol
151
,
57
–.
Maler
L.
,
Karten
H. J.
,
Bennett
M. V. L.
(
1973
).
The central connections of the anterior lateral line nerve of Gnathonemus petersii
.
J. Comp. Neurol
151
,
67
–.
Meek
J.
,
Grant
K.
(
1994
).
The role of motor command feedback in electrosensory processing
.
Eur. J. Morph
32
,
225
–.
Meek
J.
,
Grant
K.
,
Sugawara
Y.
,
Hafmans
T.
,
Veron
M.
,
Denizot
J.
(
1996
).
Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: Morphology, immunohistochemistry and synaptology
.
J. Comp. Neurol
375
,
43
–.
Meek
J.
,
Joosten
H. W. J.
(
1989
).
The distribution of serotoninin the brain of the mormyrid teleost Gnathonemus petersii
.
J. Comp. Neurol
281
,
206
–.
Meek
J.
,
Joosten
H. W. J.
,
Hafmans
T. G. M.
(
1993
).
Distribution of noradrenaline-immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii
.
J. Comp. Neurol
328
,
145
–.
Meek
J.
,
Nieuwenhuys
R.
,
Elsevier
D.
(
1986
).
Afferent and efferent connections of cerebellar lobe C3 of the mormyrid fish Gnathonemus petersii. An HRP study
.
J. Comp. Neurol
245
,
342
–.
Mugnaini
E.
,
Maler
L.
(
1987
).
Cytology and immunocytochemistry of the nucleus of the lateral line lobe in the electric fish Gnathonemus petersii (Mormyridae): Evidence suggesting that GABAergic synapses mediate an inhibitory corollary discharge
.
Synapse
1
,
32
–.
Mugnaini
E.
,
Maler
L.
(
1987
).
Cytology and immunocytochemistry of the nucleus extrolateralis anterior of the mormyrid brain: possible role of GABAergic synapses in temporal analysis
.
Anat. Embryol
176
,
313
–.
Szabo
T.
,
Libouban
S.
,
Denizot
J.-P.
(
1990
).
A well defined spinocerebellar system in the weakly electric teleost fish Gnathonemus petersii. A tracing and immunohistochemical study
.
Arch. Ital. Biol
128
,
229
–.
von der Emde
G.
,
Bell
C. C.
(
1996
).
Nucleus preeminentialis of mormyrid fish, a center for recurrent electrosensory feedback. I. Electrosensory and corollary discharge responses
.
J. Neurophysiol
76
,
1581
–.
This content is only available via PDF.