How do the communication discharges produced by electric fish evolve to accommodate the unique design features for the modality? Two design features are considered: first, the limited range of signaling imposed on the electric modality by the physics of signal transmission from dipole sources; and second, the absence of signal echoes and reverberations for electric discharges, which are non-propagating electrostatic fields. Electrostatic theory predicts that electric discharges from fish will have a short range because of the inverse cube law of geometric spreading around an electrostatic dipole. From this, one predicts that the costs of signaling will be high when fish attempt to signal over a large distance. Electric fish may economize in signal production whenever possible. For example, some gymnotiform fish appear to be impedance-matched to the resistivity of the water; others modulate the amplitude of their discharge seasonally and diurnally. The fact that electric signals do not propagate, but exist as electrostatic fields, means that, unlike sound signals, electric organ discharges produce no echoes or reverberations. Because temporal information is preserved during signal transmission, receivers may pay close attention to the temporal details of electric signals. As a consequence, electric organs have evolved with mechanisms for controlling the fine structure of electric discharge waveforms.

REFERENCES

Aubert
X.
,
Keynes
R. D.
(
1968
).
Temperature changes during and after the discharge of the electric organ in Electrophorus electricus
.
Proc. R. Soc. B
169
,
241
–.
Bass
A. H.
(
1986
).
Species differences in electric organs of mormyrids: substrates for species-typical electric organ discharge waveforms
.
J. Comp. Neurol
244
,
313
–.
Bass
A. H.
,
Hopkins
C. D.
(
1983
).
Hormonal control of sexual differentiation: Changes in electric organ discharge waveform
.
Science
220
,
971
–.
Bell
C. C.
,
Bradbury
J.
,
Russell
C. J.
(
1976
).
The electric organ of a mormyrid as a current and voltage source
.
J. Comp. Physiol
110
,
65
–.
Crawford
J. D.
,
Jacob
P.
,
Benech
V.
(
1997
).
Sound production and reproductive ecology of strongly acoustic fish inAfrica: Pollimyrus isidori, Mormyridae
.
Behaviour
134
,
677
–.
Dunlap
K. D.
,
McAnelly
M. L.
,
Zakon
H. H.
(
1997
).
Estrogen modifies an electrocommunication signal by altering the electrocyte sodium current in an electric fish, Sternopygus
.
J. Neurosci
17
,
2869
–.
Dunlap
K. D.
,
Zakon
H.
(
1998
).
Behavioral actions of androgens and androgen receptor expression in theelectrocommunication systems of an electric fish, Eigenmannia virescens
.
Hormones Behav
34
,
30
–.
Hagedorn
M.
(
1988
).
Ecology and behavior of a pulse-type electric fish Hypopomus occidentalis, Gymnotiformes Hypopomidae, in a fresh-water stream in Panama
.
Copeia
1988
,
324
–.
Hagedorn
M.
(
1995
).
The electric fish Hypopomus occidentalis can rapidly modulate the amplitude and duration of its electric organ discharges
.
Anim. Behav
49
,
1409
–.
Hagedorn
M.
,
Heiligenberg
W.
(
1985
).
Court and spark: electric signals in the courtship and mating of gymnotoid fish
.
Anim. Behav
33
,
254
–.
Hopkins
C. D.
(
1972
).
Sex differences in electric signalling in an electric fish
.
Science
176
,
1035
–.
Hopkins
C. D.
(
1974
).
Electric communication: functions in the social behavior of Eigenmannia virescens
.
Behaviour
50
,
270
–.
Hopkins
C. D.
(
1986
).
Temporal structure of non-propagated electric communication signals
.
Brain Behav. Evol
28
,
43
–.
Hopkins
C. D.
(
1991
).
Hypopomus pinnicaudatus (Hypopomidae) a new species of gymnotiform fish from South America
.
Copeia
1
,
151
–.
Hopkins
C. D.
,
Comfort
N. C.
,
Bastian
J.
,
Bass
A. H.
(
1990
).
A functional analysis of sexual dimorphism in an electric fish, Hypopomus pinnicaudatus, order Gymnotiformes
.
Brain Behav. Evol
35
,
350
–.
Kawasaki
M.
,
Maler
L.
,
Rose
G. J.
,
Heiligenberg
W.
(
1988
).
Anatomical and functional organization of the prepacemaker1228nucleus in gymnotiform electric fish: The accommodation of two behaviors in one nucleus
.
J. Comp. Neurol
276
,
113
–.
Knudsen
E. I.
(
1975
).
Spatial aspects of electric fields generated by weakly electric fish
.
J. Comp. Physiol
99
,
193
–.
Kramer
B.
(
1985
).
Jamming avoidance in the electric fish Eigenmannia: harmonic analysis of sexually dimorphic waves
.
J. Exp. Biol
119
,
41
–.
Kramer
B.
(
1999
).
Waveform discrimination, phase sensitivity and jamming avoidance in wave-type electric fish
.
J. Exp. Biol
202
,
1387
–.
Landsman
R. E.
,
Moller
P.
(
1988
).
Testosterone changes the electric organ discharge and external morphology of the mormyrid fish Gnathonemus petersii Mormyriformes
.
Experientia
44
,
900
–.
Lissmann
H. W.
(
1958
).
On the function and evolution of electric organs in fish
.
J. Exp. Biol
35
,
156
–.
Lissmann
H. W.
,
Machin
K. E.
(
1958
).
The mechanisms of object location in Gymnarchus niloticus and similar fish
.
J. Exp. Biol
35
,
457
–.
Mills
A.
,
Zakon
H. H.
(
1991
).
Chronic androgen treatment increases action potential duration in the electric organ of Sternopygus
.
J. Neurosci
11
,
2349
–.
Möhres
F. P.
(
1957
).
Elektrische Entladungen im Dienste der Revierabgrenzung bel Fischen
.
Naturwissenschaften
44
,
431
–.
Szabo
T.
(
1960
).
Development of the electric organ of Mormyridae
.
Nature
188
,
760
–.
Westby
G. W. M.
(
1975
).
Comparative studies of the agressive behaviour of two gymnotid electric fish (Gymnotus carapo and Hypopomus artedi)
.
Anim. Behav
23
,
192
–.
Zahavi
A.
(
1977
).
The cost of honesty (further remarks on the handicap principle)
.
J. Theor. Biol
67
,
603
–.
This content is only available via PDF.