Sensory systems are faced with the task of extracting behaviorally relevant information from complex sensory environments. In general, sensory acquisition involves two aspects: the control of peripheral sensory surfaces to improve signal reception and the subsequent neural filtering of incoming sensory signals to extract and enhance signals of interest. The electrosensory system of weakly electric fish provides a good model system for studying both these aspects of sensory acquisition. On the basis of infrared video recordings of black ghost knifefish (Apteronotus albifrons) feeding on small prey (Daphnia magna) in the dark, we reconstruct three-dimensional movement trajectories of the fish and prey. We combine the reconstructed trajectory information with models of peripheral electric image formation and primary electrosensory afferent response dynamics to estimate the spatiotemporal patterns of transdermal potential change and afferent activation that occur during prey-capture behavior. We characterize the behavioral strategies used by the fish, with emphasis on the functional importance of the dorsal edge in prey capture behavior, and we analyze the electrosensory consequences. In particular, we find that the high-pass filter characteristics of P-type afferent response dynamics can serve as a predictive filter for estimating the future position of the prey as the electrosensory image moves across the receptor array.

REFERENCES

REFERENCES
Bastian
J.
(
1995
).
Electrolocation
. In
The Handbook of Brain Theory and Neural Networks
(ed.
Arbib
M.
)., pp.
352
356
.
Cambridge, MA
:
MIT Press
.
Blake
R. W.
(
1983
).
Swimming in the electric eels and knifefishes.
Can. J. Zool
61
,
1432
1441
.
Carr
C. E.
,
Maler
L.
,
Sas
E.
(
1982
).
Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish
.
J. Comp. Neurol
211
,
139
–.
Franchina
C. R.
,
Hopkins
C. D.
(
1996
).
The dorsal filament of the weakly electric Apteronotidae (Gymnotiformes; Teleostei) is specialized for electroreception
.
Brain Behav. Evol
47
,
165
–.
Heiligenberg
W.
,
Dye
J.
(
1982
).
Labeling of electroreceptive afferents in a gymnotoid fish by intracellular injection of horseradish peroxidase: the mystery of multiple maps
.
J. Comp. Physiol
148
,
287
–.
Hoekstra
D.
,
Janssen
J.
(
1986
).
Lateral line receptivity in the mottled sculpin (Cottus bairdi)
.
Copeia
1
,
91
–.
Knudsen
E. I.
(
1975
).
Spatial aspects of the electric fields generated by weakly electric fish
.
J. Comp. Physiol
99
,
103
–.
Metzner
W.
,
Juranek
J.
(
1997
).
A sensory brain map for each behavior
.
Proc. Natl. Acad. Sci. USA
94
,
14798
–.
Peters
R. C.
,
Bretschneider
F.
(
1972
).
Electric phenomena in the habitat of the catfish Ictalurus nebulosus LeS
.
J. Comp. Physiol
81
,
345
–.
Scheich
H.
,
Bullock
T. H.
,
Hamstra
R. H. J.
(
1973
).
Coding properties of two classes of afferent nerve fibers: high frequency electroreceptors in the electric fish Eigenmannia
.
J. Neurophysiol
36
,
39
–.
Scheich
H.
,
Langner
G.
,
Tidemann
C.
,
Coles
R. B.
,
Guppy
A.
(
1986
).
Electroreception and electrolocation in platypus
.
Nature
319
,
401
–.
Shumway
C. A.
(
1989
).
Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish. I. Physiological differences
.
J. Neurosci
9
,
4388
–.
Shumway
C. A.
(
1989
).
Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish. II. Anatomical differences
.
J. Neurosci
9
,
4400
–.
Turner
R. W.
,
Plant
J. R.
,
Maler
L.
(
1996
).
Oscillatory and burst discharge across electrosensory topographic maps
.
J. Neurophysiol
76
,
2364
–.
von der Emde
G.
(
1994
).
Active electrolocation helps Gnathonemus petersii to find its prey
.
Naturwissenschaften
81
,
367
–.
von der Emde
G.
(
1999
).
Active electrolocation of objects in weakly electric fish
.
J. Exp. Biol
202
,
1205
–.
von der Emde
G.
,
Bleckmann
H.
(
1998
).
Finding food: senses involved in foraging for insect larvae in the electric fish Gnathonemus petersii
.
J. Exp. Biol
201
,
969
–.
Wilkens
L. A.
,
Russell
D. F.
,
Pei
X.
,
Gurgens
C.
(
1997
).
The paddlefish rostrum functions as an electrosensory antenna in plankton feeding
.
Proc. R. Soc. Lond. B
264
,
1723
–.
This content is only available via PDF.