In a previous study, it was shown that at a given speed the larvae of a species of freshwater fish, the Danube bleak Chalcalburnus chalcoides, expended considerably more metabolic energy at 15 degreesC than at 20 degreesC. We applied hydromechanical arguments to our previous data in order to determine whether the higher cost of swimming at the lower temperature might be due to the effects of viscous forces. However, even under the unrealistic assumption of the larvae swimming in the viscous regime at Reynolds numbers as high as 2000, we show here that hydromechanical forces cannot explain the high energy cost of swimming at 15 degreesC. Instead, we offer a new hypothesis that the 'two-gear system' of the swimming muscles operating in juvenile and adult fish is not yet functional in the larvae, with the consequence that, when these fish are swimming at high speeds in cold water, the muscle fibres have to operate over an increasingly inefficient range of shortening velocities.
A note on interactions between temperature, viscosity, body size and swimming energetics in fish larvae
W Wieser, R Kaufmann; A note on interactions between temperature, viscosity, body size and swimming energetics in fish larvae. J Exp Biol 1 May 1998; 201 (9): 1369–1372. doi: https://doi.org/10.1242/jeb.201.9.1369
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3747)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3747)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3747)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
The capture of crude oil droplets by filter feeders at high and low Reynolds numbers
-FilterFeeders.jpg?versionId=3747)
Researchers from the University of Montreal, Canada, reveal how tiny filter feeding barnacles and Daphnia entrap and consume minute droplets of crude oil, introducing the pollutant at the bottom of the food chain.
Patterns and processes in amphibious fish
-Review.png?versionId=3747)
In their Review, Keegan Lutek, Cassandra Donatelli and Emily Standen discuss the biomechanics and neural control of terrestrial locomotion in amphibious fish. They explore how locomotor mode depends on body shape, physical constraints and phylogeny.