The curve walking of freely moving crayfish trained to walk along a curved path during homing behaviour was investigated using a video-analysis system. The leg kinematics and leg phase relationships, as well as the relationship between stepping patterns and body axis rotation measured relative to external references, were studied. <P> The anterior and posterior extreme positions of the power stroke (AEP and PEP, respectively) and step amplitudes were analysed. As in a previous study on crayfish curve walking on a treadmill, PEPs were more posterior in outer legs (the legs on the outside of the turn) than in the inner legs. As a result, outer legs showed larger step amplitudes than inner legs. Leg kinematics varied within each walking sequence. AEP leg angles (the angles between the body and leg axes at the AEP) tended to decrease over time for inner legs and increase for outer legs. This leg angle drift was present mainly in the anterior legs and it suggests that these legs did not completely compensate for the body rotation after each step. In addition, leg angle asymmetries in a direction opposite to that of leg angle drift were observed at the start of each curve-walking sequence, suggesting that the extensive training (3 weeks) may have allowed crayfish to anticipate the leg angle drift. <P> The rotational component of curve walking showed a discontinuous pattern, with the animal's body axis turning towards the inside of the curve only periodically. Analysis of cross-correlation functions showed that the angular acceleration of the body axis in the direction of the turn occurred during the power strokes of inner legs 2 and 5 and outer leg 4. While the tripod formed by these three legs showed in-phase relationships, the legs of the corresponding contralateral tripod (outer legs 2 and 5 and inner leg 4) were not in phase. We hypothesize that inner legs 2 and 5 and outer leg 4 act synergically causing the inward body rotation observed in curve-walking crayfish and that some of the asymmetries found in step geometry may be a passive phenomenon due to the body rotation.

This content is only available via PDF.