Down-regulation of ion channel activity ('channel arrest'), which aids in preserving critical ion gradients in concert with greatly diminished energy production, is one important strategy by which anoxia-tolerant neurons adapt to O2 shortage. Channel arrest results in the elimination of action potentials and neurotransmission and also decreases the need for ion transport, which normally requires a large energy expenditure. Important targets of this down-regulation may be channels in which activity would otherwise result in the toxic increases in intracellular [Ca2+] characteristic of anoxia-sensitive mammalian neurons. In turtles, Na+ channels and the Ca2+-permeable ion channel of the N-methyl-d-aspartate (NMDA)-type glutamate receptor undergo down-regulation during anoxia. Inactivation of NMDA receptors during hypoxia occurs by a variety of mechanisms, including alterations in the phosphorylation state of ion channel subunits, Ca2+-dependent second messenger activation, changes in Ca2+-dependent polymerization/depolymerization of actin to postsynaptic receptors and activation of other G-protein-coupled receptors. Release of inhibitory neurotransmitters (e.g. gamma-aminobutyrate) and neuromodulators (e.g. adenosine) into the brain extracellular fluids may play an important role in the down-regulation of these and other types of ion channels.
Adaptations of vertebrate neurons to hypoxia and anoxia: maintaining critical Ca2+ concentrations.
P E Bickler, L T Buck; Adaptations of vertebrate neurons to hypoxia and anoxia: maintaining critical Ca2+ concentrations.. J Exp Biol 1 April 1998; 201 (8): 1141–1152. doi: https://doi.org/10.1242/jeb.201.8.1141
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3747)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3747)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3747)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
The capture of crude oil droplets by filter feeders at high and low Reynolds numbers
-FilterFeeders.jpg?versionId=3747)
Researchers from the University of Montreal, Canada, reveal how tiny filter feeding barnacles and Daphnia entrap and consume minute droplets of crude oil, introducing the pollutant at the bottom of the food chain.
Patterns and processes in amphibious fish
-Review.png?versionId=3747)
In their Review, Keegan Lutek, Cassandra Donatelli and Emily Standen discuss the biomechanics and neural control of terrestrial locomotion in amphibious fish. They explore how locomotor mode depends on body shape, physical constraints and phylogeny.