Mitochondria are responsible for the generation of ATP to fuel muscle contraction. Hypermetabolic stresses imposed upon muscles can lead to mitochondrial proliferation, but the resulting mitochondria greatly resemble their progenitors. During the mitochondrial biogenesis that accompanies phenotypic adaptation, the stoichiometric relationships between functional elements are preserved through shared sensitivities of respiratory genes to specific transcription factors. Although the properties of muscle mitochondria are generally thought to be highly conserved across species, there are many examples of mitochondrial differences between muscle types, species and developmental states and even within single cells. In this review, we discuss (1) the nature and regulation of gene families that allow coordinated expression of genes for mitochondrial products and (2) the regulatory mechanisms by which mitochondrial differences can arise over physiological and evolutionary time.

This content is only available via PDF.