During normoxia, glutamate and the glutamate family of ion channels play a key role in mediating rapid excitatory synaptic transmission in the central nervous system. However, during hypoxia, intracellular [Ca2+] increases to neurotoxic levels, mediated largely by the N-methyl-D-aspartate (NMDA) subfamily of glutamate receptors. Adenosine has been shown to decrease the magnitude of the hypoxia-induced increase in [Ca2+]i in mammalian brain slices, delaying tissue injury. Turtle brain is remarkably tolerant of anoxia, maintaining a pre-anoxic [Ca2+]i while cerebral adenosine levels increase 12-fold. Employing cell-attached single-channel patch-clamp techniques, we studied the effect of adenosine (200 micromol l-1) and anoxia on NMDA receptor open probability (Popen) and current amplitude. After 60 min of anoxic perfusion, channel Popen decreased by 65 % (from 6.8+/-1.6 to 2.4+/-0.8 %) an effect that could also be achieved with a normoxic perfusion of 200 micromol l-1 adenosine (Popen decreased from 5.8+/-1.1 to 2.3+/-1.2 %). The inclusion of 10 micromol l-1 8-phenyltheophylline, an A1 receptor blocker, prevented the adenosine- and anoxia-induced decrease in Popen. Mean single-channel current amplitude remained at approximately 2.7+/-0.23 pA under all experimental conditions. To determine whether a change in the membrane potential could be part of the mechanism by which Popen decreases, membrane and threshold potential were measured following each experiment. Membrane potential did not change significantly under any condition, ranging from -76.8 to -80.6 mV. Therefore, during anoxia, NMDA receptors cannot be regulated by Mg2+ in a manner dependent on membrane potential. Threshold potentials did decrease significantly following 60 min of anoxic or adenosine perfusion (control -33.3+/-1.9 mV, anoxia -28.4+/-1.5 mV, adenosine -23.4+/-2.8 mV). We conclude that anoxia modulates NMDA receptor activity and that adenosine plays a key role in mediating this change. This is the first direct measurement of ion channel activity in anoxic turtle brain and demonstrates that ion channel regulation is part of the naturally evolved anoxic defence mechanism of this species.
Adenosine and anoxia reduce N-methyl-D-aspartate receptor open probability in turtle cerebrocortex.
L T Buck, P E Bickler; Adenosine and anoxia reduce N-methyl-D-aspartate receptor open probability in turtle cerebrocortex.. J Exp Biol 15 January 1998; 201 (2): 289–297. doi: https://doi.org/10.1242/jeb.201.2.289
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3747)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3747)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3747)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
The capture of crude oil droplets by filter feeders at high and low Reynolds numbers
-FilterFeeders.jpg?versionId=3747)
Researchers from the University of Montreal, Canada, reveal how tiny filter feeding barnacles and Daphnia entrap and consume minute droplets of crude oil, introducing the pollutant at the bottom of the food chain.
Patterns and processes in amphibious fish
-Review.png?versionId=3747)
In their Review, Keegan Lutek, Cassandra Donatelli and Emily Standen discuss the biomechanics and neural control of terrestrial locomotion in amphibious fish. They explore how locomotor mode depends on body shape, physical constraints and phylogeny.