Sea stars are able to make firm but temporary attachments to various substrata owing to secretions released by their podia. A duo-glandular model has been proposed in which an adhesive material is released by two types of non-ciliated secretory (NCS1 and NCS2) cells and a de-adhesive material is released by ciliated secretory (CS) cells. The chemical composition of these materials and the way in which they function have been investigated by studying the adhesive footprints left by the asteroids each time they adhere to a substratum. The footprints of Asterias rubens consist of a sponge-like material deposited as a thin layer on the substratum. Inorganic residues apart, this material is made up mainly of proteins and carbohydrates. The protein moiety contains significant amounts of both charged (especially acidic) and uncharged polar residues as well as half-cystine. The carbohydrate moiety is also acidic, comprising both uronic acids and sulphate groups. Polyclonal antibodies have been raised against footprint material and were used to locate the origin of footprint constituents in the podia. Extensive immunoreactivity was detected in the secretory granules of both NCS1 and NCS2 cells, suggesting that their secretions together make up the bulk of the adhesive material. No immunoreactivity was detected in the secretory granules of CS cells, and the only other structure strongly labelled was the outermost layer of the cuticle, the fuzzy coat. This pattern of immunoreactivity suggests that the secretions of CS cells are not incorporated into the footprints, but instead might function to jettison the fuzzy coat, thereby allowing the podium to detach.
A study of the temporary adhesion of the podia in the sea star asterias rubens (Echinodermata, asteroidea) through their footprints
P Flammang, A Michel, AV Cauwenberge, H Alexandre, M Jangoux; A study of the temporary adhesion of the podia in the sea star asterias rubens (Echinodermata, asteroidea) through their footprints. J Exp Biol 15 August 1998; 201 (16): 2383–2395. doi: https://doi.org/10.1242/jeb.201.16.2383
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3772)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3772)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3772)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
An accelerometer-derived ballistocardiogram method for detecting heart rate in free-ranging marine mammals
-Whales.jpg?versionId=3772)
Max Czapanskiy and co show how the resting heart rates of blue whales are immortalized in the accelerometry traces collected by motion sensing data tags.
Global change and physiological challenges for Amazonian fish
-Review.png?versionId=3772)
In their Review, Adalberto Luis Val and Chris Wood discuss the physiological threats to the unique and diverse fish fauna of Amazonia.