Escape responses (C-shaped fast-starts) were filmed at 500 frames s-1 in the Antarctic rock cod (Notothenia coriiceps) at 0 °C. The activation and strain patterns of the superficial fast myotomal muscle were measured simultaneously using electromyography and sonomicrometry respectively. In order to bend the body into the initial C-shape, the muscle fibres in the rostral myotomes (at 0.35L, where L is total length) shortened by up to 13 % of their resting length at a maximum velocity of 1.68 fibre lengths s-1. During the contralateral contraction, muscle fibres were stretched (by 5 % and 7 % at 0.35L and 0.65L, respectively) and were activated prior to the end of lengthening, before shortening by up to 12 % of resting fibre length (peak-to-peak strain). Representative strain records were digitised to create cyclical events corresponding to the C-bend and contralateral contraction. Isolated fibres were subjected to the abstracted strain cycles and stimulated at the same point and for the same duration as occurs in vivo. During the early phase of shortening, muscle shortening velocity (V) increased dramatically whilst the load was relatively constant and represented a substantial fraction of the maximum isometric stress. Pre-stretch of active muscle was associated with significant force enhancement. For the contralateral contraction, V exceeded that predicted by the steady-state force­velocity relationship for considerable periods during each tailbeat, contributing to relatively high maximum instantaneous power outputs of up to 290 W kg-1 wet muscle mass. In vitro experiments, involving adjusting strain, cycle duration and stimulation parameters, indicated that in vivo muscle fibres produce close to their maximum power. During escape responses, the maximum velocity and acceleration recorded from the centre of gravity of the fish were 0.71±0.03 m s-1 and 17.1±1.4 m s-2, respectively (mean ± s.e.m., N=7 fish). Muscle performance was sufficient to produce maximum velocities and accelerations that were within the lower end of the range reported for temperate-zone fish.
Muscle power output during escape responses in an Antarctic fish
C E Franklin, I A Johnston; Muscle power output during escape responses in an Antarctic fish. J Exp Biol 1 February 1997; 200 (4): 703–712. doi: https://doi.org/10.1242/jeb.200.4.703
Download citation file:
Advertisement
Cited by
Celebrating 100 years of discovery

We are proud to be celebrating 100 years of discovery in Journal of Experimental Biology. Visit our centenary webpage to find out more about how we are marking this historic milestone.
Craig Franklin launches our centenary celebrations

Editor-in-Chief Craig Franklin reflects on 100 years of JEB and looks forward to our centenary celebrations, including a supplementary special issue, a new early-career researcher interview series and the launch of our latest funding initiatives.
Looking back on the first issue of JEB

Journal of Experimental Biology launched in 1923 as The British Journal of Experimental Biology. As we celebrate our centenary, we look back at that first issue and the zoologists publishing their work in the new journal.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4510)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Biology Communication Workshop: Engaging the world in the excitement of research
-BioCommunicationWorkshop.png?versionId=4510)
We are delighted to be sponsoring a Biology Communication Workshop for early-career researchers as part of JEB’s centenary celebrations. The workshop focuses on how to effectively communicate your science to other researchers and the public and takes place the day before the CSZ annual meeting, on 14 May 2023. Find out more and apply here.
Mexican fruit flies wave for distraction

Dinesh Rao and colleagues have discovered that Mexican fruit flies vanish in a blur in the eyes of predatory spiders when they wave their wings at the arachnids, buying the flies time to make their escape.