Whole-mount immunocytochemistry was used to map the location of FMRFamide-like peptides in the crayfish (Procambarus clarkii) stomatogastric nervous system. This system contains the pyloric and gastric mill central pattern generators, which receive modulatory inputs from projection neurons with somata located primarily in other ganglia of the stomatogastric nervous system. Our studies revealed stained somata in the commissural and esophageal ganglia. A pair of stained somata was located in the inferior ventricular nerve, and another pair of somata was located in the stomatogastric nerve where it is joined by the two superior esophageal nerves. The stomatogastric ganglion contained no stained somata, but the neuropil was brightly stained and 2-4 axons projected laterally in small nerves directly from the ganglion. These results indicate that FMRFamide or related peptides may act as neuromodulators in the crayfish stomatogastric nervous system. To test this hypothesis, we studied the effects of FMRFamide and four related peptides (DF2, NF1, F1 and LMS) on the pyloric motor pattern. DF2, NF1 and F1 all excited certain pyloric cells, especially the lateral pyloric (LP) and ventricular dilator (VD) neurons, and enhanced pyloric cycling frequency in most actively rhythmic preparations. FMRFamide had no detectable effects on pyloric cells, and LMS had inhibitory effects, causing disruption of the pyloric rhythm in actively cycling preparations and reducing tonic activity in non-rhythmic preparations.

This content is only available via PDF.