Wave action on exposed rocky coasts can be severe, generating large hydrodynamic forces that have been proposed to constrain the size of intertidal animals and plants. In contrast, flows subtidally are more benign, and organisms, particularly seaweeds, may grow quite large. The large dimensions of these flexible macroalgae allow them to move during much or most of a passing wave cycle, reducing relative water velocities and modifying the forces the plants must endure. The consequences of such wave-induced motion are explored for the stipitate understory kelps Eisenia arborea and Pterygophora californica using a numerical model that approximates these seaweeds as vertically oriented cantilever beams subjected to lateral hydrodynamic forces acting at their stipe tips. Bending moments and peak stresses induced in the stipes of these species during the passage of waves are calculated as functions of plant size and shape and of water depth and sea state. Model predictions for a subset of conditions are validated against real-time measurements of bending moments acting on a Pterygophora individual in the field. The results suggest that the allometric patterns of growth exhibited by Eisenia and Pterygophora can greatly reduce the stresses generated in the stipes of these plants relative to isometric growth. Low stipe stiffness acts as a general, particularly effective, stress-lowering mechanism. The dynamic swaying associated with this low stiffness can also modulate the magnitudes of peak stresses induced in the stipes of these kelps. In particular, in shallow water under large waves, dynamic loading can substantially increase induced stress, suggesting that plant motion is an important factor affecting the loading regime encountered by these organisms.
Flow and flexibility. I. Effects Of size, shape and stiffness in determining wave forces on the stipitate kelps eisenia arborea and pterygophora californica
B Gaylord, M Denny; Flow and flexibility. I. Effects Of size, shape and stiffness in determining wave forces on the stipitate kelps eisenia arborea and pterygophora californica. J Exp Biol 1 December 1997; 200 (24): 3141–3164. doi: https://doi.org/10.1242/jeb.200.24.3141
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3747)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3747)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3747)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
The capture of crude oil droplets by filter feeders at high and low Reynolds numbers
-FilterFeeders.jpg?versionId=3747)
Researchers from the University of Montreal, Canada, reveal how tiny filter feeding barnacles and Daphnia entrap and consume minute droplets of crude oil, introducing the pollutant at the bottom of the food chain.
Patterns and processes in amphibious fish
-Review.png?versionId=3747)
In their Review, Keegan Lutek, Cassandra Donatelli and Emily Standen discuss the biomechanics and neural control of terrestrial locomotion in amphibious fish. They explore how locomotor mode depends on body shape, physical constraints and phylogeny.