Photoreceptor rod cells and blood platelets are remarkably different, yet both illustrate a similar phenomenon. Both are strongly affected by membrane cholesterol, and the distribution of cholesterol in the membranes of both cell types is determined by the lipid composition within the membranes. In rod cells, cholesterol strongly inhibits rhodopsin activity. The relatively higher level of cholesterol in the plasma membrane serves to inhibit, and thereby conserve, the activity of rhodopsin, which becomes fully active in the low-cholesterol environment of the disk membranes of these same cells. This physiologically important partitioning of cholesterol between disk membranes and plasma membranes occurs because the disk membranes are enriched with phosphatidylethanolamine, thus providing a thermodynamically unfavorable environment for the sterol. Cholesterol enrichment of platelets renders these cells more responsive to stimuli of aggregation. Stimuli for platelet aggregation cause a rapid transbilayer movement of cholesterol from the outer monolayer. This stimulus-dependent redistribution of cholesterol appears to result from the concomitant movement of phosphatidylethanolamine into the outer monolayer. The attractive, yet still unproven, hypothesis is that cholesterol translocation plays an important role in the overall platelet response and is intimately related to the sensitizing actions of cholesterol on these cells.
Cell membrane lipid composition and distribution: implications for cell function and lessons learned from photoreceptors and platelets.
K Boesze-Battaglia, R Schimmel; Cell membrane lipid composition and distribution: implications for cell function and lessons learned from photoreceptors and platelets.. J Exp Biol 1 December 1997; 200 (23): 2927–2936. doi: https://doi.org/10.1242/jeb.200.23.2927
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Call for new preLighters
(update)-CallForPreLighters.png?versionId=3981)
preLights is the preprint highlighting community supported by The Company of Biologists. At the heart of preLights are our preLighters: early-career researchers who select and write about interesting new preprints for the research community. We are currently looking for new preLighters to join our team. Find out more and apply here.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3981)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3981)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.