The divalent mineral cations Ca2+ and Mg2+ play many and diverse roles both in the function of cells and in extracellular processes. The metabolism of these cations is a complex process involving the coordinated function of several organ systems and endocrine glands. A recently cloned G-protein-coupled receptor responds to extracellular calcium concentration (Ca2+0-sensing receptor, CaSR) and mediates several of the known effects of Ca2+0 on parathyroid and renal function. The CaSR, which is also expressed in a number of other tissues including thyroidal C-cells, brain and gastrointestinal tract, may function as a Ca2+0 sensor in these tissues as well. Thus, Ca2+0 is a first messenger (or hormone) which, via CaSR-mediated activation of second messenger systems (e.g. phospholipases C and A2, cyclic AMP) leads to altered function of these cells. Several mutations in the human CaSR gene have been identified and shown to cause three inherited diseases of calcium homeostasis, clearly implicating the CaSR as an important component of the homeostatic mechanism for divalent mineral ions. Ca2+ and Mg2+ losses from the body are regulated by altering the urinary excretion of these divalent cations. The localization of the CaSR transcripts and protein in the kidney not only provides a basis for a direct Ca2+0 (or Mg2+0)-mediated regulation of Ca2+ (and Mg2+) excretion but also suggests a functional link between divalent mineral and water metabolism. In the kidney, the thick ascending limb of Henle (TAL) plays crucial roles in regulating both divalent mineral reabsorption and urine concentration. Recent studies have suggested models whereby extracellular Ca2+, via the CaSR expressed in the TAL as well as in the collecting duct system, modulates both Ca2+ 0 and Mg2+ 0 as well as water reabsorbtion. When taken together, these studies suggest that the CaSR not only provides the primary mechanism for Ca2+ 0-mediated regulation of parathyroid hormone secretion from parathyroid glands but also for direct modulation of renal divalent mineral excretion and urinary concentrating ability. These latter functions may furnish a mechanism for integrating and balancing water and divalent cation losses that minimizes the risk of urinary tract stone formation. This mechanism can explain hypercalcemia-mediated polyuria (diabetes insipidus).
Role of the Ca(2+)-sensing receptor in divalent mineral ion homeostasis.
S C Hebert, E M Brown, H W Harris; Role of the Ca(2+)-sensing receptor in divalent mineral ion homeostasis.. J Exp Biol 1 January 1997; 200 (2): 295–302. doi: https://doi.org/10.1242/jeb.200.2.295
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3747)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3747)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3747)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
The capture of crude oil droplets by filter feeders at high and low Reynolds numbers
-FilterFeeders.jpg?versionId=3747)
Researchers from the University of Montreal, Canada, reveal how tiny filter feeding barnacles and Daphnia entrap and consume minute droplets of crude oil, introducing the pollutant at the bottom of the food chain.
Patterns and processes in amphibious fish
-Review.png?versionId=3747)
In their Review, Keegan Lutek, Cassandra Donatelli and Emily Standen discuss the biomechanics and neural control of terrestrial locomotion in amphibious fish. They explore how locomotor mode depends on body shape, physical constraints and phylogeny.