Lizards bend their trunks laterally with each step of locomotion and, as a result, their locomotion appears to be fundamentally different from mammalian locomotion. The goal of the present study was to determine whether lizards use the same two basic gaits as other legged animals or whether they use a mechanically unique gait due to lateral trunk bending. Force platform and kinematic measurements revealed that two species of lizards, Coleonyx variegatus and Eumeces skiltonianus, used two basic gaits similar to mammalian walking and trotting gaits. In both gaits, the kinetic energy fluctuations due to lateral movements of the center of mass were less than 5% of the total external mechanical energy fluctuations. In the walking gait, both species vaulted over their stance limbs like inverted pendulums. The fluctuations in kinetic energy and gravitational potential energy of the center of mass were approximately 180 degrees out of phase. The lizards conserved as much as 51% of the external mechanical energy required for locomotion by the inverted pendulum mechanism. Both species also used a bouncing gait, similar to mammalian trotting, in which the fluctuations in kinetic energy and gravitational potential energy of the center of mass were nearly exactly in phase. The mass-specific external mechanical work required to travel 1 m (1.5 J kg-1) was similar to that for other legged animals. Thus, in spite of marked lateral bending of the trunk, the mechanics of lizard locomotion is similar to the mechanics of locomotion in other legged animals.
Mechanics of locomotion in lizards.
C T Farley, T C Ko; Mechanics of locomotion in lizards.. J Exp Biol 1 August 1997; 200 (16): 2177–2188. doi: https://doi.org/10.1242/jeb.200.16.2177
Download citation file:
Advertisement
Cited by
In the field: an interview with Sönke Johnsen
(update2)-SonkeJohnsen.jpg?versionId=3990)
Sönke Johnsen is a Professor at Duke University, USA, investigating visual ecology and he talks about his experiences of collecting transparent animals while blue water diving and in a submersible, as well as outrunning Hurricane Katrina.
Call for new preLighters
(update)-CallForPreLighters.png?versionId=3990)
preLights is the preprint highlighting community supported by The Company of Biologists. At the heart of preLights are our preLighters: early-career researchers who select and write about interesting new preprints for the research community. We are currently looking for new preLighters to join our team. Find out more and apply here.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3990)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3990)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.