The rate of oxygen consumption (O2), respiratory quotient (RQ) and deep body temperature (TB) were recorded during a single, voluntary ingestion of Arctic cod Boreogadus saida (mean mass 18.9+/-1.1 g, s.e.m., N=13) by five postabsorptive Brunnich's guillemots (thick-billed murre, Uria lomvia). The birds were resting in air within their thermoneutral zone, and the fish were refrigerated to 0-2 degreesC. The rate of oxygen consumption increased by a factor of 1.4 during the first few minutes after ingestion, but there was no significant change in TB. Mean rate of oxygen consumption returned to preingestive levels 85 min after the birds ate the fish. The telemetered temperature of one fish reached TB within 20 min. This suggests that the persistent elevation in O2 over the next hour corresponded to the obligatory component of the heat increment of feeding (HIF) and was not related to heating the fish. Abdominal temperature increases after diving bouts in free-ranging common guillemots (common murre, Uria aalge) are possibly achieved through the HIF, since meals are processed at sea. Of the increase in O2 measured in the laboratory, it is calculated that 30 % is required to heat the fish, while 70 % is due to the HIF. In free-ranging birds, the excess heat provided by the HIF could contribute 6 % of the daily energy expenditure. This suggests that the HIF augments heat production in Uria spp. and thus reduces the energetic cost of thermoregulation.

This content is only available via PDF.