Intact locusts (Schistocerca gregaria) respond to tactile stimulation of their folded wings with rhythmic scratching movements of the ipsilateral hindleg that are directed towards the site of stimulation. For example, sites near the base of a wing elicit anteriorly directed scratches, whereas sites near the distal end of a wing elicit posteriorly directed scratches. Locusts also scratch in response to tactile stimulation of a wing that is held outstretched in a posture similar to that normally adopted during flight, but they fail to alter their leg targeting to compensate for this changed position of the stimulus site. Instead, they scratch at an empty point in space near the abdomen, where the stimulus site would have been if the wing was folded in the resting posture. This inappropriate scratching does not result from mechanical constraints on the hindleg's movement, from stimulation of abdominal sensory receptors, or from an absence of sensory information from the outstretched wing. It also persists when the metathoracic ganglion that controls movements of the hindlegs is isolated from the remainder of the central nervous system (CNS). Targeted scratching of sites on the wings of locusts therefore appears to be fixed relative to body coordinates and does not take into account alterations of the target wing's position.

This content is only available via PDF.