Oxygen consumption, ATP production and cytochrome c oxidase activity of isolated mitochondria from body-wall tissue of Arenicola marina were measured as a function of sulphide concentration, and the effect of inhibitors of the respiratory complexes on these processes was determined. Concentrations of sulphide between 6 and 9 µmol l-1 induced oxygen consumption with a respiratory control ratio of 1.7. Production of ATP was stimulated by the addition of sulphide, reaching a maximal value of 67 nmol min-1 mg-1 protein at a sulphide concentration of 8 µmol l-1. Under these conditions, 1 mole of ATP was formed per mole of sulphide consumed. Higher concentrations of sulphide led to a decrease in ATP production until complete inhibition occurred at approximately 50 µmol l-1. The production of ATP with malate and succinate was stimulated by approximately 15 % in the presence of 4 µmol l-1 sulphide, but decreased at sulphide concentrations higher than 15­20 µmol l-1. Cytochrome c oxidase was also inhibited by sulphide, showing half-maximal inhibition at 1.5 µmol l-1 sulphide. Sulphide-induced ATP production was inhibited by antimycin, cyanide and oligomycin but not by rotenone or salicylhydroxamic acid. The present data indicate that sulphide oxidation is coupled to oxidative phosphorylation solely by electron flow through cytochrome c oxidase, whereas the alternative oxidase does not serve as a coupling site. At sulphide concentrations higher than 20 µmol l-1, oxidation of sulphide serves mainly as a detoxification process rather than as a source of energy.

This content is only available via PDF.