The primary skeletal structure used by dolphins to generate the dorsoventral bending characteristic of cetacean swimming is the vertebral column. In the vertebral column of the saddleback dolphin Delphinus delphis, we characterize the static and dynamic mechanical properties of the intervertebral joints, describe regional variation and dorsoventral asymmetries in mechanical performance, and investigate how the mechanical properties are correlated with vertebral morphologies. Using a bending machine that applies an external load (N m) to a single intervertebral segment, we measured the resulting angular deformation (rad) of the segment in both dorsal extension and ventral flexion. Intervertebral segments from the thoracic, lumbar and caudal regions of the vertebral column were tested from five individuals. Using quasi-static bending tests, we measured the initial (low-strain) bending stiffness (N m rad-1) as a function of segment position, direction of bending (extension and flexion) and sequential cutting of intervertebral ligaments. We found that initial bending stiffness was significantly greater in the lumbar region than in adjacent thoracic and caudal regions, and all joints were stiffer in extension than is predicted (r2 = 0.554) by the length and width of the intervertebral disc and the length of the cranial vertebral body in the segment. Stiffness in flexion is predicted (r2 = 0.400) by the width of the nucleus pulposus, the length of the caudal vertebral body in the segment and the height of the transverse processes from the ventral surface of the vertebral body. We also performed dynamic bending tests on intervertebral segments from the lumbo-caudal joint and the joint between caudal vertebrae 7 and 8. Dynamic bending stiffness (N m rad-1) increases with increasing bending amplitude and is independent of bending frequency. Damping coefficient (kg m2 rad-2 s-1) decreases with increasing bending amplitude and frequency. Resilience (% energy return) increases from approximately 20% at low bending amplitudes (+/-0.6 degree) to approximately 50% at high bending amplitudes (+/-2.9 degrees). Based on these findings, the dolphin's vertebral column has the mechanical capacity to help control the body's locomotor reconfigurations, to store elastic energy and to dampen oscillations.
Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis.
J H Long, D A Pabst, W R Shepherd, W A McLellan; Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis.. J Exp Biol 1 January 1997; 200 (1): 65–81. doi: https://doi.org/10.1242/jeb.200.1.65
Download citation file:
Advertisement
Cited by
So long Andy and welcome Monica
We say a fond farewell to Andy Biewener who, after 20 years and steering hundreds of manuscripts through peer review, will be stepping down from his role as JEB Editor. We are delighted to welcome Monica Daley to the team in his place.
Supporting early-career researchers
As a journal published by The Company of Biologists, we champion early-career researchers. Find out more about the practical solutions available to help this vital community navigate the first stages of their careers.
Neuroethology of number sense across the animal kingdom
Andreas Nieder considers the fundamentally different types of brains of diverse and distantly related animal species that give rise to number skills across the animal kingdom.
Hiking trails ideal for sauntering grizzlies
New measurements reveal that grizzly bears use similar amounts of energy as humans when walking and prefer to take routes with a gradient of less than 10%, which explains why they sometimes turn up on human hiking trails that are shallow for our use and are also ideal for grizzlies.
Upcoming grant deadlines
Grants awarded by The Company of Biologists help scientists travel, attend events and host sustainable activities. Make a note of the upcoming application deadlines and find out more about the grants on offer:
Sustainable Conferencing Grants
17 May 2021
Travelling Fellowships
31 May 2021
Scientific Meeting Grants
4 June 2021