Single fibres were isolated from the fast myotomal muscle of the short-horned sculpin (Myoxocephalus scorpius L.). Fish were acclimated to either 5 °C (10 h:14 h light:dark) or 15 °C (12 h:12 h light:dark) for 1­2 months. Isometric tension (Fmax) and unloaded contraction velocity (Vslack) were determined in maximally activated skinned fibres over the range 0 to 20 °C. Fibres isolated from 5 °C-acclimated and 15 °C-acclimated fish failed to relax completely following activations at 15 °C and 20 °C respectively. In 5 °C-acclimated fish, Fmax increased from 75 kN m-2 at 0 °C to 123 kN m-2 at 10 °C and was not significantly higher at 15 or 20 °C. The relationship between Fmax and temperature was not significantly different for cold- and warm-acclimated fish. Vslack was around 2.8 fibre lengths s-1 in both acclimation groups at 0 °C, but it increased at a significantly faster rate with temperature in 15 °C- than in 5 °C-acclimated fish. At 20 °C, Vmax was significantly higher in 15 °C-acclimated (8.7 fibre lengths s-1) than in 5 °C-acclimated fish (5.3 fibre lengths s-1). In order to investigate the molecular mechanism(s) underlying changes in Vmax, myosin was purified by ion-exchange chromatography. No difference in myosin heavy chain composition could be detected on the basis of peptide mapping with four different proteolytic enzymes. Two-dimensional polyacrylamide gel electrophoresis revealed no myofibrillar protein isoforms unique to either acclimation temperature. However, the ratio of myosin alkali light chain contents (LC3f:LC1f), as determined by capillary electrophoresis, was significantly lower in muscle from 15 °C-acclimated (0.73) than from 5 °C-acclimated fish (1.66). The results suggest that changes in Vmax are achieved via altered expression of myosin light chains independently of myosin heavy chain composition. In support of this hypothesis, the myofibrillar ATPase activity of fast muscle was not altered by temperature acclimation.
Molecular mechanisms underlying the plasticity of muscle contractile properties with temperature acclimation in the marine fish Myoxocephalus scorpius
D Ball, I A Johnston; Molecular mechanisms underlying the plasticity of muscle contractile properties with temperature acclimation in the marine fish Myoxocephalus scorpius. J Exp Biol 1 June 1996; 199 (6): 1363–1373. doi: https://doi.org/10.1242/jeb.199.6.1363
Download citation file:
Advertisement
Cited by
Celebrating 100 years of discovery

We are proud to be celebrating 100 years of discovery in Journal of Experimental Biology. Visit our centenary webpage to find out more about how we are marking this historic milestone.
Craig Franklin launches our centenary celebrations

Editor-in-Chief Craig Franklin reflects on 100 years of JEB and looks forward to our centenary celebrations, including a supplementary special issue, a new early-career researcher interview series and the launch of our latest funding initiatives.
Looking back on the first issue of JEB

Journal of Experimental Biology launched in 1923 as The British Journal of Experimental Biology. As we celebrate our centenary, we look back at that first issue and the zoologists publishing their work in the new journal.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4510)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Biology Communication Workshop: Engaging the world in the excitement of research
-BioCommunicationWorkshop.png?versionId=4510)
We are delighted to be sponsoring a Biology Communication Workshop for early-career researchers as part of JEB’s centenary celebrations. The workshop focuses on how to effectively communicate your science to other researchers and the public and takes place the day before the CSZ annual meeting, on 14 May 2023. Find out more and apply here.
Mexican fruit flies wave for distraction

Dinesh Rao and colleagues have discovered that Mexican fruit flies vanish in a blur in the eyes of predatory spiders when they wave their wings at the arachnids, buying the flies time to make their escape.