Free amino acids in the posterior adductor muscle of mussels (Mytilus edulis) occur in a high-energy gradient group, with energy gradients of 15­18 kJ mol-1 (aspartate, beta-alanine, glycine, taurine and threonine), and a low-energy gradient group, with energy gradients around 12 kJ mol-1 (the rest of the amino acids). Two of the amino acids, glycine and taurine, are present at intracellular concentrations of 100­150 mmol kg-1, while the other amino acids occur at concentrations below 50 mmol kg-1. Exposure of mussels to formaldehyde causes a marked influx of Na+ into the muscle cells and an increase in cellular water content. The Na+ gradient, which provides the energy for the cellular accumulation of free amino acids, is reduced. The drop in the Na+ gradient is accompanied by a nearly proportional reduction in the energy gradients of all amino acids in the high-energy gradient group and a 150 mmol kg-1 reduction in the total intracellular concentration of free amino acids. Most of this reduction is made up by the Na+-dependent amino acids aspartate, glycine and threonine, the concentrations of which are reduced by about 120 mmol kg-1. The transmembrane distribution of the low-energy gradient amino acids seems to be independent of the Na+ gradient, and these amino acids display only moderate reductions in their intracellular concentrations when the Na+ gradient is reduced. The reduction in the concentrations of the free amino acids appears to be a volume-regulatory response, serving to bring the cell volume back to its optimal level after the formaldehyde-induced Na+ influx has caused a cellular swelling. The basis of these differences in Na+-dependence is discussed. Taurine, which is the quantitatively dominating organic solute and an important volume-regulatory osmolyte in mussels, does not take part in the volume-regulatory response. This may be due the role of taurine in the protection against potentially toxic Ca2+, which enters the cells in large quantities when mussels are exposed to formaldehyde.
The effect of formaldehyde exposure on the transmembrane distribution of free amino acids in muscles of Mytilus edulis
K Zachariassen, A Olsen, T Aunaas; The effect of formaldehyde exposure on the transmembrane distribution of free amino acids in muscles of Mytilus edulis. J Exp Biol 1 June 1996; 199 (6): 1287–1294. doi: https://doi.org/10.1242/jeb.199.6.1287
Download citation file:
Advertisement
Cited by
Celebrating 100 years of discovery

We are proud to be celebrating 100 years of discovery in Journal of Experimental Biology. Visit our centenary webpage to find out more about how we are marking this historic milestone.
Craig Franklin launches our centenary celebrations

Editor-in-Chief Craig Franklin reflects on 100 years of JEB and looks forward to our centenary celebrations, including a supplementary special issue, a new early-career researcher interview series and the launch of our latest funding initiatives.
Looking back on the first issue of JEB

Journal of Experimental Biology launched in 1923 as The British Journal of Experimental Biology. As we celebrate our centenary, we look back at that first issue and the zoologists publishing their work in the new journal.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4510)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Biology Communication Workshop: Engaging the world in the excitement of research
-BioCommunicationWorkshop.png?versionId=4510)
We are delighted to be sponsoring a Biology Communication Workshop for early-career researchers as part of JEB’s centenary celebrations. The workshop focuses on how to effectively communicate your science to other researchers and the public and takes place the day before the CSZ annual meeting, on 14 May 2023. Find out more and apply here.
Mexican fruit flies wave for distraction

Dinesh Rao and colleagues have discovered that Mexican fruit flies vanish in a blur in the eyes of predatory spiders when they wave their wings at the arachnids, buying the flies time to make their escape.