The temporal characteristics of statocyst and leg proprioceptive inputs to the uropod motor system were investigated in crayfish using behavioural and electromyographic analyses to elucidate their functional roles in the control of the uropod steering response under natural conditions. When the animal, which was suspended in the air without a footboard, was actively extending its abdomen, prolonged stimulation of the statocysts by body rolling elicited a maintained asymmetrical configuration of the bilateral uropods. Prolonged stimulation of the walking legs by footboard tilting with the animal body held in the upright position elicited a transient uropod response. When the treadmill was tilted while the animal was walking on it in the upright position, the uropods showed the same transient response. However, when the animal body was rolled, together with the treadmill, while the animal was walking on it, the uropods showed a transient response which was reversed in direction compared with that observed during body rolling without a footboard. This transient response was abolished by the removal of the statoliths. The results show that the statocysts and leg proprioceptors exert sustained and transient control effects, respectively, on the uropod motor system during walking. It is also suggested that the uropod response to body rolling during walking is controlled primarily by leg proprioceptor signals which result from statocyst-induced changes in the leg position.

This content is only available via PDF.