In grasshoppers, ventilation rate increases after jumping, in association with decreases in haemolymph pH and tracheal PO2 and increases in haemolymph and tracheal PCO2. Are these changes in haemolymph acid-base status or tracheal gas composition causally responsible for the increases in post-locomotion ventilation rate? To answer this question, we manipulated haemolymph acid-base status with injections into the haemocoel and independently manipulated tracheal PO2 and PCO2 with tracheal perfusions. Using a new technique, we continuously monitored ventilation rate and ventilatory pressures on virtually unrestrained insects. Changes in haemolymph acid-base status or tracheal PCO2 did not affect post-exercise ventilation rate, clearly demonstrating that the ventilatory stimulus associated with locomotion is not dependent on negative feedback from these variables. Post-exercise ventilation rate varied with tracheal PO2, with the lowest ventilation rates observed at the lowest tracheal PO2 values, a result opposite to that expected if negative feedback from internal PO2 levels were to drive the increase in ventilation rate. Particularly after activity, there was considerable heterogeneity in unperfused animals between tracheal and haemolymph PCO2, and between tracheal PCO2 in the thorax and leg, consistent with unidirectional airflow and a considerable role for diffusion gradients in the gas exchange of grasshoppers.
Haemolymph acid-base status, tracheal gas levels and the control of post-exercise ventilation rate in grasshoppers
K Krolikowski, J Harrison; Haemolymph acid-base status, tracheal gas levels and the control of post-exercise ventilation rate in grasshoppers. J Exp Biol 1 February 1996; 199 (2): 391–399. doi: https://doi.org/10.1242/jeb.199.2.391
Download citation file:
Advertisement
Cited by
Celebrating 100 years of discovery

We are proud to be celebrating 100 years of discovery in Journal of Experimental Biology. Visit our centenary webpage to find out more about how we are marking this historic milestone.
Craig Franklin launches our centenary celebrations

Editor-in-Chief Craig Franklin reflects on 100 years of JEB and looks forward to our centenary celebrations, including a supplementary special issue, a new early-career researcher interview series and the launch of our latest funding initiatives.
Looking back on the first issue of JEB

Journal of Experimental Biology launched in 1923 as The British Journal of Experimental Biology. As we celebrate our centenary, we look back at that first issue and the zoologists publishing their work in the new journal.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4510)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Biology Communication Workshop: Engaging the world in the excitement of research
-BioCommunicationWorkshop.png?versionId=4510)
We are delighted to be sponsoring a Biology Communication Workshop for early-career researchers as part of JEB’s centenary celebrations. The workshop focuses on how to effectively communicate your science to other researchers and the public and takes place the day before the CSZ annual meeting, on 14 May 2023. Find out more and apply here.
Mexican fruit flies wave for distraction

Dinesh Rao and colleagues have discovered that Mexican fruit flies vanish in a blur in the eyes of predatory spiders when they wave their wings at the arachnids, buying the flies time to make their escape.