Migration routes of birds throw light on orientation performance at different geographic scales, over distances ranging from a few kilometres to more than 104 km. Detailed knowledge about the flight routes may be used to test predictions about optimal orientation according to theoretical principles and about the use of compasses based on celestial or magnetic cues. Ringing recoveries demonstrate that the migratory journey of many species, such as the wheatear and willow warbler, is divided into successive legs with different main orientation. Autumn and spring migration routes are often different, sometimes diverging on a continental scale. Aerial radiotracking of whooping cranes in North America and satellite tracking of brent geese migrating from Iceland across the Greenland ice cap point to the significant role of large-scale topography for the shaping of migration routes. Compass and position control are also required, e.g. during long passages across featureless sea or ice, but how these elements are integrated into the birds' orientation system remains unclear. Radar studies from the Arctic Ocean illustrate the importance of map projections for interpreting flight paths and suggest that birds accomplish approximate great circle orientation. Gradual course changes shown by migrating knots monitored by radar in Scandinavia are at variance with expected changes if the birds were to use a star, sun or magnetic compass over longer distances. Accurate recording of short flight segments shows how flying birds respond to visual, audible and electromagnetic cues, and also documents orientation precision and capacity to integrate rapidly shifting courses into a consistent resulting orientation. Analyses of flight patterns are crucial for understanding how birds find and follow their migration routes over different ranges of geographical scale.

This content is only available via PDF.