Freely walking crayfish, Procambarus clarkii, were studied using a video analysis procedure adapted especially for use with crayfish. The animals were placed in a tank and their homing behaviour was filmed as they returned in a straight line to their shelter. Various sequences were studied at the two following levels. First, the trajectory of each pair of legs (from leg 2 to leg 5) during the step cycle (power stroke and return stroke) was studied to measure stride length and to analyse in detail changes in acceleration. Each leg was found to contribute in a specific manner to locomotion. Second, ipsi- and contralateral leg coordination was investigated. Ipsilateral coordination was found to involve a metachronal organization from front to back in all the walking sequences recorded, whereas contralateral coordination involved, in addition to the weak alternate coupling commonly observed in treadmill walking, another coordination pattern where the legs on each side (legs 3 and 4) are in phase. The results obtained in these free-walking sequences are discussed and compared with those obtained previously, in particular in treadmill situations.

This content is only available via PDF.