Previous studies have demonstrated that the phyllomedusine hylids possess highly protrusible tongues, a derived characteristic within the family Hylidae. In the present study, the kinematics of the feeding behavior of a phyllomedusine species, Pachymedusa dacnicolor, was analyzed using high-speed video (180 frames s-1). Its behavior was compared with that of Hyla cinerea, a species with a weakly protrusible tongue. P. dacnicolor exhibits a faster rate of tongue protraction, a longer gape cycle and more variable feeding kinematics than H. cinerea. In addition, the tongue is used in a unique 'fly-swatter' fashion, to pin the prey to the substratum as the frog completes the lunge. The rapid tongue protraction, extended gape cycle and fly-swatter action may have evolved in response to a diet of large, rapidly moving insects. In addition, several duration variables of the feeding cycle were greater for misses than for captures and drops, which suggests that sensory feedback rather than biomechanics controls gape cycle duration.

This content is only available via PDF.