Previous work suggested that Ca2+ and Zn2+ share a common uptake pathway in rainbow trout gills. We here report on relationships between the kinetic variables for unidirectional Ca2+ influx and unidirectional Zn2+ influx during a 1 month exposure of freshwater rainbow trout to Zn2+ (150 µg l-1=2.3 µmol l-1 as total zinc, Zn). Initial exposure to Zn2+ caused a large competitive inhibition of Ca2+ influx, as indicated by a threefold increase in apparent Km for Ca2+ (measured in the presence of Zn2+). There was also a smaller non-competitive inhibition (50 % decrease in Jmax) of the Ca2+ transport system, which was abolished after 1­2 weeks of exposure. The Km, measured in the absence of Zn2+, decreased dramatically (i.e. elevated affinity) on days 1­4 but increased thereafter; both true and apparent Km finally stabilized significantly above control levels. However, the Km values for Ca2+ (<200 µmol l-1) were low relative to the Ca2+ level in the water (1000 µmol l-1), and therefore the changes did not influence the actual Ca2+ influx of the fish, which tracked Jmax. In contrast, water [Zn2+] (2.3 µmol l-1 as total Zn) was close to the reported apparent Km (3.7 µmol l-1) for Zn2+ influx in the presence of 1000 µmol l-1 Ca2+. Unidirectional Zn2+ influx increased during the first week of exposure to waterborne Zn2+, followed by a persistent reduction to about 50 % of control levels, effects that may be largely explained by the observed changes in true Km for Ca2+. We speculate that the initial response of the fish to elevated [Zn2+] is to compensate for a reduced availability of Ca2+ by markedly increasing the affinity of a dual Ca2+/Zn2+ transporter. Once the Ca2+ influx is 'corrected' by restoration of functional transport sites (Jmax), the system is tuned to limit the influx of Zn2+ by a persistent reduction in the affinities for both ions. The changes in influx characteristics for Ca2+ and Zn2+ were correlated with internal physiological alterations indicative of adaptation to Zn2+ and increased metabolic cost. Depressed plasma [Ca] was corrected within 1 week, and there were no effects on whole-body [Ca] or [Zn]. A slight accumulation of Zn in the gills was associated with increased branchial metallothionein levels. Rates of protein synthesis and degradation in the gills were initially increased and whole-body growth was transiently impaired, effects which were reversed after 18 days of exposure. Sublethal challenge with Zn2+ (at 450 µg l-1=6.9 µmol l-1 as total Zn) always depressed plasma [Ca] in control fish, but by 1 month of exposure to Zn2+ at 150 µg l-1 (as total Zn), experimental fish were resistant to challenge. However, the fish did not acquire increased survival tolerance (LT50) to a lethal concentration of Zn2+ (4 mg l-1=61 µmol l-1 as total Zn).
Ca2+ versus Zn2+ transport in the gills of freshwater rainbow trout and the cost of adaptation to waterborne Zn2+
C Hogstrand, S Reid, C Wood; Ca2+ versus Zn2+ transport in the gills of freshwater rainbow trout and the cost of adaptation to waterborne Zn2+. J Exp Biol 1 February 1995; 198 (2): 337–348. doi: https://doi.org/10.1242/jeb.198.2.337
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Call for new preLighters
(update)-CallForPreLighters.png?versionId=3981)
preLights is the preprint highlighting community supported by The Company of Biologists. At the heart of preLights are our preLighters: early-career researchers who select and write about interesting new preprints for the research community. We are currently looking for new preLighters to join our team. Find out more and apply here.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3981)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3981)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.