The crustacean stomatogastric ganglion, which is situated in the ophthalmic artery, can be modulated by both intrinsically released molecules and hormones. In the crab Cancer borealis, over a dozen neuroactive compounds have been identified in the input axons that project into the stomatogastric neuropil. However, little is known about the modulator content of the two major neurohemal organs, the sinus glands and the pericardial organs, in this crab. We now report the results of a series of immunocytochemical experiments designed to identify putative neurohormones in these tissues. We find that the majority of modulators present in the input axons of the stomatogastric ganglion are also present in at least one of the neurohemal organs. Specifically, allatostatin-like, buccalin-like, cholecystokinin-like, FLRFamide-like, GABA-like, locustatachykinin-like, myomodulin-like, proctolin-like, red pigment concentrating hormone-like and serotonin-like immunoreactivities are all present in both the stomatogastric neuropil and at least one of the neurohemal organs. Thus, these substances are likely to serve a dual role as both local and hormonal modulators of the stomatogastric network. Two other substances, beta-pigment dispersing hormone and crustacean cardioactive peptide, are not present in the stomatogastric neuropil, but beta-pigment dispersing hormone immunoreactivity is present in the sinus glands and crustacean cardioactive peptide immunoreactivity is present in the pericardial organs. It is likely that crustacean cardioactive peptide exerts its influence on the stomatogastric neural circuit via hormonal pathways. Double-labeling experiments show that the patterns of modulator co-localization present in the stomatogastric neuropil are different from those in the neurosecretory organs, suggesting that few rules of colocalization hold across these tissues.
Matrix of neuromodulators in neurosecretory structures of the crab Cancer borealis.
A E Christie, P Skiebe, E Marder; Matrix of neuromodulators in neurosecretory structures of the crab Cancer borealis.. J Exp Biol 1 December 1995; 198 (12): 2431–2439. doi: https://doi.org/10.1242/jeb.198.12.2431
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3667)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3667)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3667)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
Ecotourism affecting iguana glucose tolerance
-Iguanas.jpg?versionId=3667)
Ecotourists feeding grapes on skewers to north Bahamian rock iguanas may be doing the reptiles more harm than good as the sugar charged diet is giving the animals high blood sugar.
Evolution of metabolic plasticity
-MetabolicPlasticity.png?versionId=3667)
In their Commentary, Frank Seebacher and Julian Beaman propose that metabolic plasticity originated in prebiotic protocells and that it was a pre-requisite for effective transfer of genetic material across generations – the hallmark of Darwinian evolution.