Haemoglobin function within lamprey erythrocytes offers a unique solution to gas transport among vertebrates. Lamprey haemoglobin within intact erythrocytes is in oligomer/monomer equilibrium and has an oxygen affinity similar to that of haemoglobin in other active fishes. The cooperativity of oxygen binding, which is reduced at low pH values, the effect of protons and the effect of the concentration of haemoglobin on its oxygen affinity are all due to dissociation/association reactions of the haemoglobin molecules. The permeability of the lamprey red cell membrane to acid and base equivalents is very low, and plasma bicarbonate cannot therefore be dehydrated to carbon dioxide to any significant extent during the residence time of blood in the gills. This potential limitation on carbon dioxide excretion is overcome, however, by the high intraerythrocytic pH and the marked oxygenation-linked pH changes in the erythrocyte, which are due to the large Haldane effect of the haemoglobin. Owing to the relative impermeability of the erythrocyte membrane to acid equivalents, intraerythrocytic haemoglobin cannot take part in the acid-base buffering of the extracellular compartment. As a consequence, extracellular acid loads cause marked fluctuations in plasma pH.

This content is only available via PDF.