The effects of temperature and nutritional status on the metabolic rate of Nyctophilus gouldi were examined. Bats fed marked meals first defecated approximately 1.34 h after feeding and were calculated to have a mean retention time of 5.38 +/- 0.57 h but to be truly post-absorptive after 9 h. Over the temperature range 1-35 degrees C, the metabolic rate (Vo2) and body temperature (Tb) of fasted bats were extremely labile. Below 30 degrees C, the bats all entered torpor and between 10 and 15 degrees C showed a mean 84% reduction over the maximal Vo2. Body temperature was also minimal over this range (Tb = 12.5 degrees C, Ta = 10-15 degrees C). Both total and dry thermal conductance increased in a curvilinear manner with temperature, total conductance from 3.38 +/- 0.65 J g-1 h-1 degree C-1 at 1 degree C to 24.25 +/- 1.99 J g-1 h-1 degree C-1 at 35 degrees C (mean +/- S.E.M.), while the rate of evaporative water loss increased with Ta by a maximum of 10-fold from 0.21 mg g-1 h-1 at 5 degrees C to 2.69 mg g-1h-1 at 35 degrees C. Between 10 and 25 degrees C, intermittent respiration characterised by episodic bouts of breathing/gas exchange and periods of apnoea with no measurable Vo2 occurred. Although the duration of apnoea decreased when temperature was increased, the volume of oxygen taken up in each episode did not change. Mean respiratory exchange ratio (RER) was low (0.64-0.77) in post-absorptive bats, typical of fat utilisation, but during torpor ranged from near 0 to near 2, indicating discontinuous and disproportional gas exchange. Feeding produced a condition of relatively sustained homeothermy and high RER in the bats which persisted for 9 h, after which the N. gouldi became torpid. Immediately after feeding, the Vo2 of the bats increased fivefold above the post-absorptive level, while the Vco2 increased by more than eightfold. Similarly, body temperature also increased, declining to torpid values after 9. The RER in immediately post-feeding bats was near 1.0 but subsequently declined to near 0.7, indicating a switch from carbohydrate to fat utilisation. Therefore, the N. gouldi were heterothermic, exhibited a highly labile metabolic rate, and rates of heat and water loss, and Tb which were influenced both by ambient temperature and by nutritional status.

This content is only available via PDF.