Of the 17 muscles responsible for flight control in flies, only the first basalar muscle (b1) is known to fire an action potential each and every wing beat at a precise phase of the wing-beat period. The phase of action potentials in the b1 is shifted during turns, implicating the b1 in the control of aerodynamic yaw torque. We used the work loop technique to quantify the effects of phase modulation on the mechanical output of the b1 of the blowfly Calliphora vicina. During cyclic length oscillations at 10 and 50 Hz, the magnitude of positive work output by the b1 was similar to that measured previously from other insect muscles. However, when tested at wing-beat frequency (150 Hz), the net work performed in each cycle was negative. The twitch kinetics of the b1 suggest that negative work output reflects intrinsic specializations of the b1 muscle. Our results suggest that, in addition to a possible role as a passive elastic element, the phase-sensitivity of its mechanical properties may endow the b1 with the capacity to modulate wing-beat kinematics during turning maneuvers.
MODULATION OF NEGATIVE WORK OUTPUT FROM A STEERING MUSCLE OF THE BLOWFLY CALLIPHORA VICINA
M Tu, M Dickinson; MODULATION OF NEGATIVE WORK OUTPUT FROM A STEERING MUSCLE OF THE BLOWFLY CALLIPHORA VICINA. J Exp Biol 1 July 1994; 192 (1): 207–224. doi: https://doi.org/10.1242/jeb.192.1.207
Download citation file:
Advertisement
Cited by
So long Andy and welcome Monica
We say a fond farewell to Andy Biewener who, after 20 years and steering hundreds of manuscripts through peer review, will be stepping down from his role as JEB Editor. We are delighted to welcome Monica Daley to the team in his place.
Supporting early-career researchers
As a journal published by The Company of Biologists, we champion early-career researchers. Find out more about the practical solutions available to help this vital community navigate the first stages of their careers.
Neuroethology of number sense across the animal kingdom
Andreas Nieder considers the fundamentally different types of brains of diverse and distantly related animal species that give rise to number skills across the animal kingdom.
Hiking trails ideal for sauntering grizzlies
New measurements reveal that grizzly bears use similar amounts of energy as humans when walking and prefer to take routes with a gradient of less than 10%, which explains why they sometimes turn up on human hiking trails that are shallow for our use and are also ideal for grizzlies.
Upcoming grant deadlines
Grants awarded by The Company of Biologists help scientists travel, attend events and host sustainable activities. Make a note of the upcoming application deadlines and find out more about the grants on offer:
Sustainable Conferencing Grants
17 May 2021
Travelling Fellowships
31 May 2021
Scientific Meeting Grants
4 June 2021