The downstroke-to-upstroke transition of many insects is characterized by rapid wing rotation. The aerodynamic consequences of these rapid changes in angle of attack have been investigated using a mechanical model dynamically scaled to the Reynolds number appropriate for the flight of small insects such as Drosophila. Several kinematic parameters of the wing flip were examined, including the speed and axis of rotation, as well as the duration and angle of attack during the wing stroke preceding rotation. Alteration of these kinematic parameters altered force generation during the subsequent stroke in a variety of ways. 1. When the rotational axis was close to the trailing edge, the model wing could capture vorticity generated during rotation and greatly increase aerodynamic performance. This vortex capture was most clearly manifested by the generation of lift at an angle of attack of 0°. Lift at a 0° angle of attack was also generated following rotation about the leading edge, but only if the downstroke angle was large enough to generate a von Karman street. The lift may be due to an alteration in the effective angle of attack caused by the inter-vortex stream in the downstroke wake. 2. The maximum lift attained (over all angles of attack) was substantially elevated if the wing translated backwards through a wake generated by the previous stroke. Transient lift coefficient values of nearly 4 were obtained when the wing translated back through a von Karman street generated at a 76.5° angle of attack. This effect might also be explained by the influence of the inter-vortex stream, which contributes a small component to fluid velocity in the direction of translation. 3. The growth of lift with angle of attack was significantly elevated following a 7.5 chord stroke with a 76.5° angle of attack, although it was relatively constant under all other kinematic conditions. 4. The results also indicate the discrepancies between transient and time-averaged measures of performance that arise when unsteady mechanisms are responsible for force generation. Although the influence of wing rotation was strong during the first few chords of translation, averaging the performance over as little as 6.5 chords of motion greatly attenuated the effects of rotation. 5. Together, these modeling results suggest that the unsteady mechanisms generated by simple wing flips could provide an important source for the production of aerodynamic forces in insect flight. Furthermore, the extreme sensitivity to small variations in almost all kinematic parameters could provide a foundation for understanding the aerodynamic mechanisms underlying active flight control.
THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS
M Dickinson; THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS. J Exp Biol 1 July 1994; 192 (1): 179–206. doi: https://doi.org/10.1242/jeb.192.1.179
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Call for new preLighters
(update)-CallForPreLighters.png?versionId=3981)
preLights is the preprint highlighting community supported by The Company of Biologists. At the heart of preLights are our preLighters: early-career researchers who select and write about interesting new preprints for the research community. We are currently looking for new preLighters to join our team. Find out more and apply here.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3981)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3981)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.